Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
AKT1 AKT1 JAK2 JAK2 CHRNA4 CHRNA4 CHRNA7 CHRNA7 CHRNA6 CHRNA6 CHRNA3 CHRNA3 PICK1 PICK1 CHRNB4 CHRNB4 CHRNB2 CHRNB2 CHRNA5 CHRNA5 CHRNA2 CHRNA2
"CHRNA7" - cholinergic receptor, nicotinic, alpha 7 in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
CHRNA7cholinergic receptor, nicotinic, alpha 7 (neuronal); After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane. The channel is blocked by alpha-bungarotoxin (531 aa)    
Predicted Functional Partners:
CHRNA4
cholinergic receptor, nicotinic, alpha 4 (neuronal); After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane permeable to sodium ions (627 aa)
          score_image score_image score_image 0.912
CHRNB2
cholinergic receptor, nicotinic, beta 2 (neuronal); After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane permeable to sodiun ions (502 aa)
          score_image score_image score_image 0.911
CHRNA2
cholinergic receptor, nicotinic, alpha 2 (neuronal); After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane (529 aa)
          score_image score_image score_image 0.910
CHRNB4
cholinergic receptor, nicotinic, beta 4 (neuronal); After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane (498 aa)
          score_image score_image score_image 0.909
CHRNA3
cholinergic receptor, nicotinic, alpha 3 (neuronal); After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane (505 aa)
          score_image score_image score_image 0.908
AKT1
v-akt murine thymoma viral oncogene homolog 1; AKT1 is one of 3 closely related serine/threonine- protein kinases (AKT1, AKT2 and AKT3) called the AKT kinase, and which regulate many processes including metabolism, proliferation, cell survival, growth and angiogenesis. This is mediated through serine and/or threonine phosphorylation of a range of downstream substrates. Over 100 substrate candidates have been reported so far, but for most of them, no isoform specificity has been reported. AKT is responsible of the regulation of glucose uptake by mediating insulin-induced translocation o [...] (480 aa)
            score_image   0.831
JAK2
Janus kinase 2; Non-receptor tyrosine kinase involved in various processes such as cell growth, development, differentiation or histone modifications. Mediates essential signaling events in both innate and adaptive immunity. In the cytoplasm, plays a pivotal role in signal transduction via its association with type I receptors such as growth hormone (GHR), prolactin (PRLR), leptin (LEPR), erythropoietin (EPOR), thrombopoietin (THPO); or type II receptors including IFN-alpha, IFN-beta, IFN-gamma and multiple interleukins. Following ligand-binding to cell surface receptors, phosphorylate [...] (1132 aa)
          score_image score_image   0.825
PICK1
protein interacting with PRKCA 1; Probable adapter protein that bind to and organize the subcellular localization of a variety of membrane proteins containing some PDZ recognition sequence. Involved in the clustering of various receptors, possibly by acting at the receptor internalization level. Plays a role in synaptic plasticity by regulating the trafficking and internalization of AMPA receptors. May be regulated upon PRKCA activation. May regulate heteromeric ASIC1/ASIC3 channel (415 aa)
            score_image   0.792
CHRNA6
cholinergic receptor, nicotinic, alpha 6 (neuronal); After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane (494 aa)
          score_image score_image score_image 0.744
CHRNA5
cholinergic receptor, nicotinic, alpha 5 (neuronal); After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane (468 aa)
          score_image score_image score_image 0.743
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: low (21%)