STRINGSTRING
gcvH gcvH gcvPB gcvPB gcvPA gcvPA CC_3355 CC_3355 CC_0342 CC_0342 CC_1731 CC_1731 glyA glyA lipA lipA lipB lipB CC_1727 CC_1727 Kgd Kgd
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
gcvHGlycine cleavage system H protein; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. (121 aa)    
Predicted Functional Partners:
gcvPB
Glycine cleavage system P protein, subunit 2; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family. C-terminal subunit subfamily.
 0.999
gcvPA
Glycine cleavage system P protein, subunit 1; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein.
 0.999
CC_3355
Glycine cleavage system T protein; Identified by match to TIGR protein family HMM TIGR00528.
 0.999
CC_0342
2-oxoglutarate dehydrogenase, E3 component, lipoamide dehydrogenase; Identified by match to protein family HMM.
 
 
 0.978
CC_1731
Pyruvate dehydrogenase complex, E3 component, lipoamide dehydrogenase; Identified by match to protein family HMM.
 
  
 0.976
glyA
Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism.
 
 
 0.966
lipA
Lipoic acid synthase; Catalyzes the radical-mediated insertion of two sulfur atoms into the C-6 and C-8 positions of the octanoyl moiety bound to the lipoyl domains of lipoate-dependent enzymes, thereby converting the octanoylated domains into lipoylated derivatives.
 
 
 0.912
lipB
Lipoate-protein ligase B; Catalyzes the transfer of endogenously produced octanoic acid from octanoyl-acyl-carrier-protein onto the lipoyl domains of lipoate- dependent enzymes. Lipoyl-ACP can also act as a substrate although octanoyl-ACP is likely to be the physiological substrate.
   
 0.900
CC_1727
Pyruvate dehydrogenase complex, E1 component, pyruvate dehydrogenase beta subunit; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO2.
  
 
 0.899
Kgd
2-oxoglutarate dehydrogenase, E1 component; Identified by match to TIGR protein family HMM TIGR00239.
   
 
 0.895
Your Current Organism:
Caulobacter vibrioides CB15
NCBI taxonomy Id: 190650
Other names: C. vibrioides CB15, Caulobacter crescentus CB15, Caulobacter vibrioides ATCC 19089
Server load: low (30%) [HD]