STRINGSTRING
speD speD speE speE metK metK ACO77749.1 ACO77749.1 ACO79752.1 ACO79752.1 mtnB mtnB fliN fliN mtnD mtnD mtnA mtnA mtnC mtnC dsbB dsbB
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
speDS-adenosylmethionine decarboxylase; Catalyzes the decarboxylation of S-adenosylmethionine to S- adenosylmethioninamine (dcAdoMet), the propylamine donor required for the synthesis of the polyamines spermine and spermidine from the diamine putrescine; Belongs to the prokaryotic AdoMetDC family. Type 2 subfamily. (264 aa)    
Predicted Functional Partners:
speE
Spermidine synthase protein; Catalyzes the irreversible transfer of a propylamine group from the amino donor S-adenosylmethioninamine (decarboxy-AdoMet) to putrescine (1,4-diaminobutane) to yield spermidine.
 
 
 0.997
metK
S-adenosylmethionine synthetase; Catalyzes the formation of S-adenosylmethionine (AdoMet) from methionine and ATP. The overall synthetic reaction is composed of two sequential steps, AdoMet formation and the subsequent tripolyphosphate hydrolysis which occurs prior to release of AdoMet from the enzyme.
    
 0.939
ACO77749.1
Conserved hypothetical protein.
  
 
 0.913
ACO79752.1
C-5 cytosine-specific DNA methylase; Belongs to the class I-like SAM-binding methyltransferase superfamily. C5-methyltransferase family.
     
  0.900
mtnB
Pentulose-5-phosphate-4-epimerase-related protein; Catalyzes the dehydration of methylthioribulose-1-phosphate (MTRu-1-P) into 2,3-diketo-5-methylthiopentyl-1-phosphate (DK-MTP-1-P). Belongs to the aldolase class II family. MtnB subfamily.
 
   
 0.609
fliN
Flagellar motor switch protein; FliN is one of three proteins (FliG, FliN, FliM) that form the rotor-mounted switch complex (C ring), located at the base of the basal body. This complex interacts with the CheY and CheZ chemotaxis proteins, in addition to contacting components of the motor that determine the direction of flagellar rotation. Belongs to the FliN/MopA/SpaO family.
   
    0.603
mtnD
Acireductone dioxygenase, ARD; Catalyzes 2 different reactions between oxygene and the acireductone 1,2-dihydroxy-3-keto-5-methylthiopentene (DHK-MTPene) depending upon the metal bound in the active site. Fe-containing acireductone dioxygenase (Fe-ARD) produces formate and 2-keto-4- methylthiobutyrate (KMTB), the alpha-ketoacid precursor of methionine in the methionine recycle pathway. Ni-containing acireductone dioxygenase (Ni-ARD) produces methylthiopropionate, carbon monoxide and formate, and does not lie on the methionine recycle pathway.
  
   
 0.591
mtnA
Initiation factor 2B; Catalyzes the interconversion of methylthioribose-1-phosphate (MTR-1-P) into methylthioribulose-1-phosphate (MTRu-1-P).
 
   
 0.570
mtnC
2,3-diketo-5-methylthio-1-phosphopentane phosphatase; Bifunctional enzyme that catalyzes the enolization of 2,3- diketo-5-methylthiopentyl-1-phosphate (DK-MTP-1-P) into the intermediate 2-hydroxy-3-keto-5-methylthiopentenyl-1-phosphate (HK- MTPenyl-1-P), which is then dephosphorylated to form the acireductone 1,2-dihydroxy-3-keto-5-methylthiopentene (DHK-MTPene). Belongs to the HAD-like hydrolase superfamily. MasA/MtnC family.
  
   
 0.553
dsbB
Disulfide bond formation protein; Required for disulfide bond formation in some periplasmic proteins. Acts by oxidizing the DsbA protein; Belongs to the DsbB family.
     
 0.525
Your Current Organism:
Azotobacter vinelandii
NCBI taxonomy Id: 322710
Other names: A. vinelandii DJ, Azotobacter vinelandii DJ, Azotobacter vinelandii str. DJ, Azotobacter vinelandii strain DJ
Server load: low (24%) [HD]