Full Link:
close STRING Website Improvement Campaign
deny allow Over the next 24 hours, we are collecting usage information on the web-interface (learn more).   Do you allow anonymous tracking of your activity ?
STRINGSTRING
PnsL1 PnsL1 PnsB2 PnsB2 NdhU NdhU NdhM NdhM PnsB3 PnsB3 NdhN NdhN PnsB4 PnsB4 PnsB1 PnsB1 CRR3 CRR3 NdhO NdhO NdhL NdhL
"PnsB4" - NDH dependent flow 6 protein in Arabidopsis thaliana
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
PnsB4NDH dependent flow 6 protein; NDH shuttles electrons from NAD(P)H-plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient (175 aa)    
Predicted Functional Partners:
PnsB3
Photosynthetic NDH subcomplex B 3; NDH shuttles electrons from NAD(P)H-plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient (204 aa)
     
 
  0.971
NdhL
NADH dehydrogenase-like complex L; NDH shuttles electrons from NAD(P)H-plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient (191 aa)
     
 
  0.947
PnsB1
Photosynthetic NDH subcomplex B 1; NDH shuttles electrons from NAD(P)H-plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient (461 aa)
     
 
    0.915
PnsB2
Photosynthetic NDH subcomplex B 2; NDH shuttles electrons from NAD(P)H-plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient (367 aa)
     
 
  0.890
NdhN
Oxidoreductase; NDH shuttles electrons from NAD(P)H-plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient (209 aa)
     
 
  0.890
PnsL1
PsbP-like protein 2; NDH shuttles electrons from NAD(P)H-plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient (Probable). Required for accumulation of the chloroplast NAD(P)H dehydrogenase (NDH) complex (PubMed-17827269) (238 aa)
     
   
  0.873
CRR3
CHLORORESPIRATORY REDUCTION 3; Probable subunit of the chloroplast NAD(P)H dehydrogenase (NDH) complex of the photosynthetic electron transport chain. Required for both formation and activity of NDH. May function in assembly or stabilization of the NDH complex (174 aa)
     
 
    0.863
NdhO
NADH dehydrogenase-like complex ); NDH shuttles electrons from NAD(P)H-plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient (158 aa)
     
 
    0.854
NdhU
NADH dehydrogenase-like complex U; NDH shuttles electrons from NAD(P)H-plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient (218 aa)
     
 
    0.845
NdhM
NADH dehydrogenase-like complex M; NDH shuttles electrons from NAD(P)H-plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient (217 aa)
     
 
    0.827
Your Current Organism:
Arabidopsis thaliana
NCBI taxonomy Id: 3702
Other names: A. thaliana, Arabidopsis thaliana, Arabidopsis thaliana (L.) Heynh., mouse-ear cress, thale cress, thale-cress
Server load: low (4%)