node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
Kcnk10 | Kcnk2 | ENSMUSP00000152473 | ENSMUSP00000141891 | Potassium channel, subfamily K, member 10; Belongs to the two pore domain potassium channel (TC 1.A.1.8) family. | Potassium channel subfamily K member 2; Ion channel that contributes to passive transmembrane potassium transport. Reversibly converts between a voltage-insensitive potassium leak channel and a voltage-dependent outward rectifying potassium channel in a phosphorylation-dependent manner. In astrocytes, forms mostly heterodimeric potassium channels with KCNK1, with only a minor proportion of functional channels containing homodimeric KCNK2. In astrocytes, the heterodimer formed by KCNK1 and KCNK2 is required for rapid glutamate release in response to activation of G-protein coupled recep [...] | 0.969 |
Kcnk10 | Kcnk4 | ENSMUSP00000152473 | ENSMUSP00000025908 | Potassium channel, subfamily K, member 10; Belongs to the two pore domain potassium channel (TC 1.A.1.8) family. | Potassium channel subfamily K member 4; Voltage-insensitive potassium channel. Channel opening is triggered by mechanical forces that deform the membrane. Channel opening is triggered by raising the intracellular pH to basic levels (By similarity). The channel is inactive at 24 degrees Celsius (in vitro); raising the temperature to 37 degrees Celsius increases the frequency of channel opening, with a further increase in channel activity when the temperature is raised to 42 degrees Celsius (By similarity). Plays a role in the sensory perception of pain caused by pressure. Plays a role i [...] | 0.686 |
Kcnk10 | Piezo1 | ENSMUSP00000152473 | ENSMUSP00000089777 | Potassium channel, subfamily K, member 10; Belongs to the two pore domain potassium channel (TC 1.A.1.8) family. | Piezo-type mechanosensitive ion channel component 1; Pore-forming subunit of a mechanosensitive non-specific cation channel. Generates currents characterized by a linear current- voltage relationship that are sensitive to ruthenium red and gadolinium. Plays a key role in epithelial cell adhesion by maintaining integrin activation through R-Ras recruitment to the ER, most probably in its activated state, and subsequent stimulation of calpain signaling. In the kidney, may contribute to the detection of intraluminal pressure changes and to urine flow sensing. Acts as shear- stress sensor [...] | 0.573 |
Kcnk10 | Trpv4 | ENSMUSP00000152473 | ENSMUSP00000071859 | Potassium channel, subfamily K, member 10; Belongs to the two pore domain potassium channel (TC 1.A.1.8) family. | Transient receptor potential cation channel subfamily V member 4; Non-selective calcium permeant cation channel involved in osmotic sensitivity and mechanosensitivity. Activation by exposure to hypotonicity within the physiological range exhibits an outward rectification. Also activated by heat, low pH, citrate and phorbol esters. Increase of intracellular Ca(2+) potentiates currents. Channel activity seems to be regulated by a calmodulin-dependent mechanism with a negative feedback mechanism (By similarity). Acts as a regulator of intracellular Ca(2+) in synoviocytes (By similarity). [...] | 0.449 |
Kcnk2 | Kcnk10 | ENSMUSP00000141891 | ENSMUSP00000152473 | Potassium channel subfamily K member 2; Ion channel that contributes to passive transmembrane potassium transport. Reversibly converts between a voltage-insensitive potassium leak channel and a voltage-dependent outward rectifying potassium channel in a phosphorylation-dependent manner. In astrocytes, forms mostly heterodimeric potassium channels with KCNK1, with only a minor proportion of functional channels containing homodimeric KCNK2. In astrocytes, the heterodimer formed by KCNK1 and KCNK2 is required for rapid glutamate release in response to activation of G-protein coupled recep [...] | Potassium channel, subfamily K, member 10; Belongs to the two pore domain potassium channel (TC 1.A.1.8) family. | 0.969 |
Kcnk2 | Kcnk4 | ENSMUSP00000141891 | ENSMUSP00000025908 | Potassium channel subfamily K member 2; Ion channel that contributes to passive transmembrane potassium transport. Reversibly converts between a voltage-insensitive potassium leak channel and a voltage-dependent outward rectifying potassium channel in a phosphorylation-dependent manner. In astrocytes, forms mostly heterodimeric potassium channels with KCNK1, with only a minor proportion of functional channels containing homodimeric KCNK2. In astrocytes, the heterodimer formed by KCNK1 and KCNK2 is required for rapid glutamate release in response to activation of G-protein coupled recep [...] | Potassium channel subfamily K member 4; Voltage-insensitive potassium channel. Channel opening is triggered by mechanical forces that deform the membrane. Channel opening is triggered by raising the intracellular pH to basic levels (By similarity). The channel is inactive at 24 degrees Celsius (in vitro); raising the temperature to 37 degrees Celsius increases the frequency of channel opening, with a further increase in channel activity when the temperature is raised to 42 degrees Celsius (By similarity). Plays a role in the sensory perception of pain caused by pressure. Plays a role i [...] | 0.720 |
Kcnk2 | Piezo1 | ENSMUSP00000141891 | ENSMUSP00000089777 | Potassium channel subfamily K member 2; Ion channel that contributes to passive transmembrane potassium transport. Reversibly converts between a voltage-insensitive potassium leak channel and a voltage-dependent outward rectifying potassium channel in a phosphorylation-dependent manner. In astrocytes, forms mostly heterodimeric potassium channels with KCNK1, with only a minor proportion of functional channels containing homodimeric KCNK2. In astrocytes, the heterodimer formed by KCNK1 and KCNK2 is required for rapid glutamate release in response to activation of G-protein coupled recep [...] | Piezo-type mechanosensitive ion channel component 1; Pore-forming subunit of a mechanosensitive non-specific cation channel. Generates currents characterized by a linear current- voltage relationship that are sensitive to ruthenium red and gadolinium. Plays a key role in epithelial cell adhesion by maintaining integrin activation through R-Ras recruitment to the ER, most probably in its activated state, and subsequent stimulation of calpain signaling. In the kidney, may contribute to the detection of intraluminal pressure changes and to urine flow sensing. Acts as shear- stress sensor [...] | 0.743 |
Kcnk2 | Trpv4 | ENSMUSP00000141891 | ENSMUSP00000071859 | Potassium channel subfamily K member 2; Ion channel that contributes to passive transmembrane potassium transport. Reversibly converts between a voltage-insensitive potassium leak channel and a voltage-dependent outward rectifying potassium channel in a phosphorylation-dependent manner. In astrocytes, forms mostly heterodimeric potassium channels with KCNK1, with only a minor proportion of functional channels containing homodimeric KCNK2. In astrocytes, the heterodimer formed by KCNK1 and KCNK2 is required for rapid glutamate release in response to activation of G-protein coupled recep [...] | Transient receptor potential cation channel subfamily V member 4; Non-selective calcium permeant cation channel involved in osmotic sensitivity and mechanosensitivity. Activation by exposure to hypotonicity within the physiological range exhibits an outward rectification. Also activated by heat, low pH, citrate and phorbol esters. Increase of intracellular Ca(2+) potentiates currents. Channel activity seems to be regulated by a calmodulin-dependent mechanism with a negative feedback mechanism (By similarity). Acts as a regulator of intracellular Ca(2+) in synoviocytes (By similarity). [...] | 0.609 |
Kcnk4 | Kcnk10 | ENSMUSP00000025908 | ENSMUSP00000152473 | Potassium channel subfamily K member 4; Voltage-insensitive potassium channel. Channel opening is triggered by mechanical forces that deform the membrane. Channel opening is triggered by raising the intracellular pH to basic levels (By similarity). The channel is inactive at 24 degrees Celsius (in vitro); raising the temperature to 37 degrees Celsius increases the frequency of channel opening, with a further increase in channel activity when the temperature is raised to 42 degrees Celsius (By similarity). Plays a role in the sensory perception of pain caused by pressure. Plays a role i [...] | Potassium channel, subfamily K, member 10; Belongs to the two pore domain potassium channel (TC 1.A.1.8) family. | 0.686 |
Kcnk4 | Kcnk2 | ENSMUSP00000025908 | ENSMUSP00000141891 | Potassium channel subfamily K member 4; Voltage-insensitive potassium channel. Channel opening is triggered by mechanical forces that deform the membrane. Channel opening is triggered by raising the intracellular pH to basic levels (By similarity). The channel is inactive at 24 degrees Celsius (in vitro); raising the temperature to 37 degrees Celsius increases the frequency of channel opening, with a further increase in channel activity when the temperature is raised to 42 degrees Celsius (By similarity). Plays a role in the sensory perception of pain caused by pressure. Plays a role i [...] | Potassium channel subfamily K member 2; Ion channel that contributes to passive transmembrane potassium transport. Reversibly converts between a voltage-insensitive potassium leak channel and a voltage-dependent outward rectifying potassium channel in a phosphorylation-dependent manner. In astrocytes, forms mostly heterodimeric potassium channels with KCNK1, with only a minor proportion of functional channels containing homodimeric KCNK2. In astrocytes, the heterodimer formed by KCNK1 and KCNK2 is required for rapid glutamate release in response to activation of G-protein coupled recep [...] | 0.720 |
Kcnk4 | Piezo1 | ENSMUSP00000025908 | ENSMUSP00000089777 | Potassium channel subfamily K member 4; Voltage-insensitive potassium channel. Channel opening is triggered by mechanical forces that deform the membrane. Channel opening is triggered by raising the intracellular pH to basic levels (By similarity). The channel is inactive at 24 degrees Celsius (in vitro); raising the temperature to 37 degrees Celsius increases the frequency of channel opening, with a further increase in channel activity when the temperature is raised to 42 degrees Celsius (By similarity). Plays a role in the sensory perception of pain caused by pressure. Plays a role i [...] | Piezo-type mechanosensitive ion channel component 1; Pore-forming subunit of a mechanosensitive non-specific cation channel. Generates currents characterized by a linear current- voltage relationship that are sensitive to ruthenium red and gadolinium. Plays a key role in epithelial cell adhesion by maintaining integrin activation through R-Ras recruitment to the ER, most probably in its activated state, and subsequent stimulation of calpain signaling. In the kidney, may contribute to the detection of intraluminal pressure changes and to urine flow sensing. Acts as shear- stress sensor [...] | 0.709 |
Kcnk4 | Trpv4 | ENSMUSP00000025908 | ENSMUSP00000071859 | Potassium channel subfamily K member 4; Voltage-insensitive potassium channel. Channel opening is triggered by mechanical forces that deform the membrane. Channel opening is triggered by raising the intracellular pH to basic levels (By similarity). The channel is inactive at 24 degrees Celsius (in vitro); raising the temperature to 37 degrees Celsius increases the frequency of channel opening, with a further increase in channel activity when the temperature is raised to 42 degrees Celsius (By similarity). Plays a role in the sensory perception of pain caused by pressure. Plays a role i [...] | Transient receptor potential cation channel subfamily V member 4; Non-selective calcium permeant cation channel involved in osmotic sensitivity and mechanosensitivity. Activation by exposure to hypotonicity within the physiological range exhibits an outward rectification. Also activated by heat, low pH, citrate and phorbol esters. Increase of intracellular Ca(2+) potentiates currents. Channel activity seems to be regulated by a calmodulin-dependent mechanism with a negative feedback mechanism (By similarity). Acts as a regulator of intracellular Ca(2+) in synoviocytes (By similarity). [...] | 0.588 |
Piezo1 | Kcnk10 | ENSMUSP00000089777 | ENSMUSP00000152473 | Piezo-type mechanosensitive ion channel component 1; Pore-forming subunit of a mechanosensitive non-specific cation channel. Generates currents characterized by a linear current- voltage relationship that are sensitive to ruthenium red and gadolinium. Plays a key role in epithelial cell adhesion by maintaining integrin activation through R-Ras recruitment to the ER, most probably in its activated state, and subsequent stimulation of calpain signaling. In the kidney, may contribute to the detection of intraluminal pressure changes and to urine flow sensing. Acts as shear- stress sensor [...] | Potassium channel, subfamily K, member 10; Belongs to the two pore domain potassium channel (TC 1.A.1.8) family. | 0.573 |
Piezo1 | Kcnk2 | ENSMUSP00000089777 | ENSMUSP00000141891 | Piezo-type mechanosensitive ion channel component 1; Pore-forming subunit of a mechanosensitive non-specific cation channel. Generates currents characterized by a linear current- voltage relationship that are sensitive to ruthenium red and gadolinium. Plays a key role in epithelial cell adhesion by maintaining integrin activation through R-Ras recruitment to the ER, most probably in its activated state, and subsequent stimulation of calpain signaling. In the kidney, may contribute to the detection of intraluminal pressure changes and to urine flow sensing. Acts as shear- stress sensor [...] | Potassium channel subfamily K member 2; Ion channel that contributes to passive transmembrane potassium transport. Reversibly converts between a voltage-insensitive potassium leak channel and a voltage-dependent outward rectifying potassium channel in a phosphorylation-dependent manner. In astrocytes, forms mostly heterodimeric potassium channels with KCNK1, with only a minor proportion of functional channels containing homodimeric KCNK2. In astrocytes, the heterodimer formed by KCNK1 and KCNK2 is required for rapid glutamate release in response to activation of G-protein coupled recep [...] | 0.743 |
Piezo1 | Kcnk4 | ENSMUSP00000089777 | ENSMUSP00000025908 | Piezo-type mechanosensitive ion channel component 1; Pore-forming subunit of a mechanosensitive non-specific cation channel. Generates currents characterized by a linear current- voltage relationship that are sensitive to ruthenium red and gadolinium. Plays a key role in epithelial cell adhesion by maintaining integrin activation through R-Ras recruitment to the ER, most probably in its activated state, and subsequent stimulation of calpain signaling. In the kidney, may contribute to the detection of intraluminal pressure changes and to urine flow sensing. Acts as shear- stress sensor [...] | Potassium channel subfamily K member 4; Voltage-insensitive potassium channel. Channel opening is triggered by mechanical forces that deform the membrane. Channel opening is triggered by raising the intracellular pH to basic levels (By similarity). The channel is inactive at 24 degrees Celsius (in vitro); raising the temperature to 37 degrees Celsius increases the frequency of channel opening, with a further increase in channel activity when the temperature is raised to 42 degrees Celsius (By similarity). Plays a role in the sensory perception of pain caused by pressure. Plays a role i [...] | 0.709 |
Piezo1 | Trpv4 | ENSMUSP00000089777 | ENSMUSP00000071859 | Piezo-type mechanosensitive ion channel component 1; Pore-forming subunit of a mechanosensitive non-specific cation channel. Generates currents characterized by a linear current- voltage relationship that are sensitive to ruthenium red and gadolinium. Plays a key role in epithelial cell adhesion by maintaining integrin activation through R-Ras recruitment to the ER, most probably in its activated state, and subsequent stimulation of calpain signaling. In the kidney, may contribute to the detection of intraluminal pressure changes and to urine flow sensing. Acts as shear- stress sensor [...] | Transient receptor potential cation channel subfamily V member 4; Non-selective calcium permeant cation channel involved in osmotic sensitivity and mechanosensitivity. Activation by exposure to hypotonicity within the physiological range exhibits an outward rectification. Also activated by heat, low pH, citrate and phorbol esters. Increase of intracellular Ca(2+) potentiates currents. Channel activity seems to be regulated by a calmodulin-dependent mechanism with a negative feedback mechanism (By similarity). Acts as a regulator of intracellular Ca(2+) in synoviocytes (By similarity). [...] | 0.788 |
Trpv4 | Kcnk10 | ENSMUSP00000071859 | ENSMUSP00000152473 | Transient receptor potential cation channel subfamily V member 4; Non-selective calcium permeant cation channel involved in osmotic sensitivity and mechanosensitivity. Activation by exposure to hypotonicity within the physiological range exhibits an outward rectification. Also activated by heat, low pH, citrate and phorbol esters. Increase of intracellular Ca(2+) potentiates currents. Channel activity seems to be regulated by a calmodulin-dependent mechanism with a negative feedback mechanism (By similarity). Acts as a regulator of intracellular Ca(2+) in synoviocytes (By similarity). [...] | Potassium channel, subfamily K, member 10; Belongs to the two pore domain potassium channel (TC 1.A.1.8) family. | 0.449 |
Trpv4 | Kcnk2 | ENSMUSP00000071859 | ENSMUSP00000141891 | Transient receptor potential cation channel subfamily V member 4; Non-selective calcium permeant cation channel involved in osmotic sensitivity and mechanosensitivity. Activation by exposure to hypotonicity within the physiological range exhibits an outward rectification. Also activated by heat, low pH, citrate and phorbol esters. Increase of intracellular Ca(2+) potentiates currents. Channel activity seems to be regulated by a calmodulin-dependent mechanism with a negative feedback mechanism (By similarity). Acts as a regulator of intracellular Ca(2+) in synoviocytes (By similarity). [...] | Potassium channel subfamily K member 2; Ion channel that contributes to passive transmembrane potassium transport. Reversibly converts between a voltage-insensitive potassium leak channel and a voltage-dependent outward rectifying potassium channel in a phosphorylation-dependent manner. In astrocytes, forms mostly heterodimeric potassium channels with KCNK1, with only a minor proportion of functional channels containing homodimeric KCNK2. In astrocytes, the heterodimer formed by KCNK1 and KCNK2 is required for rapid glutamate release in response to activation of G-protein coupled recep [...] | 0.609 |
Trpv4 | Kcnk4 | ENSMUSP00000071859 | ENSMUSP00000025908 | Transient receptor potential cation channel subfamily V member 4; Non-selective calcium permeant cation channel involved in osmotic sensitivity and mechanosensitivity. Activation by exposure to hypotonicity within the physiological range exhibits an outward rectification. Also activated by heat, low pH, citrate and phorbol esters. Increase of intracellular Ca(2+) potentiates currents. Channel activity seems to be regulated by a calmodulin-dependent mechanism with a negative feedback mechanism (By similarity). Acts as a regulator of intracellular Ca(2+) in synoviocytes (By similarity). [...] | Potassium channel subfamily K member 4; Voltage-insensitive potassium channel. Channel opening is triggered by mechanical forces that deform the membrane. Channel opening is triggered by raising the intracellular pH to basic levels (By similarity). The channel is inactive at 24 degrees Celsius (in vitro); raising the temperature to 37 degrees Celsius increases the frequency of channel opening, with a further increase in channel activity when the temperature is raised to 42 degrees Celsius (By similarity). Plays a role in the sensory perception of pain caused by pressure. Plays a role i [...] | 0.588 |
Trpv4 | Piezo1 | ENSMUSP00000071859 | ENSMUSP00000089777 | Transient receptor potential cation channel subfamily V member 4; Non-selective calcium permeant cation channel involved in osmotic sensitivity and mechanosensitivity. Activation by exposure to hypotonicity within the physiological range exhibits an outward rectification. Also activated by heat, low pH, citrate and phorbol esters. Increase of intracellular Ca(2+) potentiates currents. Channel activity seems to be regulated by a calmodulin-dependent mechanism with a negative feedback mechanism (By similarity). Acts as a regulator of intracellular Ca(2+) in synoviocytes (By similarity). [...] | Piezo-type mechanosensitive ion channel component 1; Pore-forming subunit of a mechanosensitive non-specific cation channel. Generates currents characterized by a linear current- voltage relationship that are sensitive to ruthenium red and gadolinium. Plays a key role in epithelial cell adhesion by maintaining integrin activation through R-Ras recruitment to the ER, most probably in its activated state, and subsequent stimulation of calpain signaling. In the kidney, may contribute to the detection of intraluminal pressure changes and to urine flow sensing. Acts as shear- stress sensor [...] | 0.788 |