Your Input: | |||||
gcvP | Glycine dehydrogenase [decarboxylating]; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family. (961 aa) | ||||
metH | Methionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate. (1170 aa) | ||||
serB | Phosphoserine phosphatase. (402 aa) | ||||
metF | 5,10-methylenetetrahydrofolate reductase; Belongs to the methylenetetrahydrofolate reductase family. (307 aa) | ||||
purU | Formyltetrahydrofolate deformylase; Catalyzes the hydrolysis of 10-formyltetrahydrofolate (formyl-FH4) to formate and tetrahydrofolate (FH4). (293 aa) | ||||
serC | Phosphoserine aminotransferase; Catalyzes the reversible conversion of 3- phosphohydroxypyruvate to phosphoserine and of 3-hydroxy-2-oxo-4- phosphonooxybutanoate to phosphohydroxythreonine; Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family. SerC subfamily. (372 aa) | ||||
folD2 | Bifunctional protein FolD 2; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. (284 aa) | ||||
glyA1 | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. (484 aa) | ||||
glyA2 | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. (412 aa) | ||||
sdaA | L-serine dehydratase; Belongs to the iron-sulfur dependent L-serine dehydratase family. (455 aa) | ||||
glyA3 | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. (420 aa) | ||||
gcvH | Glycine cleavage system H protein; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. (125 aa) | ||||
gcvT | Aminomethyltransferase; The glycine cleavage system catalyzes the degradation of glycine. (372 aa) | ||||
AIS00667.1 | Methionine synthase, vitamin-B12 independent. (335 aa) | ||||
AIS00681.1 | Dehydrogenase; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (324 aa) | ||||
serA | D-3-phosphoglycerate dehydrogenase; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (529 aa) | ||||
AIS01812.1 | Methylenetetrahydrofolate reductase; Belongs to the methylenetetrahydrofolate reductase family. (296 aa) | ||||
folD1 | Bifunctional protein FolD 1; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. (282 aa) |