STRINGSTRING
AMX02044.1 AMX02044.1 AMX02598.1 AMX02598.1 nqrE nqrE nqrB nqrB nuoC nuoC AMX04209.1 AMX04209.1 AMX03065.1 AMX03065.1 nuoK nuoK AMX03628.1 AMX03628.1 AMX03127.1 AMX03127.1 nuoN nuoN AMX03069.1 AMX03069.1 AMX01215.1 AMX01215.1 AMX04028.1 AMX04028.1 AMX01773.1 AMX01773.1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
AMX02044.1Ubiquinol-cytochrome C reductase; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. (733 aa)
AMX02598.1Electron transfer flavoprotein-ubiquinone oxidoreductase; Accepts electrons from ETF and reduces ubiquinone. (545 aa)
nqrENADH:ubiquinone reductase (Na(+)-transporting) subunit E; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. NqrA to NqrE are probably involved in the second step, the conversion of ubisemiquinone to ubiquinol; Belongs to the NqrDE/RnfAE family. (202 aa)
nqrBNADH:ubiquinone reductase (Na(+)-transporting) subunit B; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. NqrA to NqrE are probably involved in the second step, the conversion of ubisemiquinone to ubiquinol. (403 aa)
nuoCNADH-quinone oxidoreductase subunit C/D; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; In the C-terminal section; belongs to the complex I 49 kDa subunit family. (601 aa)
AMX04209.1NADH dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (183 aa)
AMX03065.1Hypothetical protein; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. (942 aa)
nuoKNADH-quinone oxidoreductase subunit K; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. (105 aa)
AMX03628.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (275 aa)
AMX03127.1Derived by automated computational analysis using gene prediction method: Protein Homology. (179 aa)
nuoNNADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. (509 aa)
AMX03069.1NADH-quinone oxidoreductase subunit L; Derived by automated computational analysis using gene prediction method: Protein Homology. (618 aa)
AMX01215.1MFS transporter; Derived by automated computational analysis using gene prediction method: Protein Homology. (296 aa)
AMX04028.1Cytochrome BD ubiquinol oxidase subunit II; Derived by automated computational analysis using gene prediction method: Protein Homology. (334 aa)
AMX01773.1Cytochrome D ubiquinol oxidase subunit I; Derived by automated computational analysis using gene prediction method: Protein Homology. (467 aa)
Your Current Organism:
Microbulbifer thermotolerans
NCBI taxonomy Id: 252514
Other names: DSM 19189, JCM 14709, M. thermotolerans, Microbulbifer sp. JAMB-A94, Microbulbifer thermotolerans Miyazaki et al. 2008, strain JAMB A94
Server load: low (16%) [HD]