STRINGSTRING
manX manX manY manY aceA aceA gldA gldA pfkA pfkA ugpB ugpB pck pck galP galP crr crr ptsI ptsI ptsH ptsH glk glk manZ manZ fruB fruB glpT glpT ptsG ptsG pfkB pfkB ppsA ppsA nagB nagB
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
manXFused mannose-specific PTS enzymes: IIA component/IIB component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II ManXYZ PTS system is involved in mannose transport. Also functions as a receptor for bacterial chemotaxis and is required for infection of the cell by bacteriophage lambda where it most likely functions as a pore for penetration of lambda DNA. (323 aa)
manYMannose-specific enzyme IIC component of PTS; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II ManXYZ PTS system is involved in mannose transport. Also functions as a receptor for bacterial chemotaxis and is required for infection of the cell by bacteriophage lambda where it most likely functions as a pore for penetration of lambda DNA. (266 aa)
aceAIsocitrate lyase; Involved in the metabolic adaptation in response to environmental changes. Catalyzes the reversible formation of succinate and glyoxylate from isocitrate, a key step of the glyoxylate cycle, which operates as an anaplerotic route for replenishing the tricarboxylic acid cycle during growth on fatty acid substrates. (434 aa)
gldAGlycerol dehydrogenase, NAD+ dependent; Catalyzes the NAD-dependent oxidation of glycerol to dihydroxyacetone (glycerone). Allows microorganisms to utilize glycerol as a source of carbon under anaerobic conditions. In E.coli, an important role of GldA is also likely to regulate the intracellular level of dihydroxyacetone by catalyzing the reverse reaction, i.e. the conversion of dihydroxyacetone into glycerol. Possesses a broad substrate specificity, since it is also able to oxidize 1,2-propanediol and to reduce glycolaldehyde, methylglyoxal and hydroxyacetone into ethylene glycol, lac [...] (367 aa)
pfkA6-phosphofructokinase I; Catalyzes the phosphorylation of D-fructose 6-phosphate to fructose 1,6-bisphosphate by ATP, the first committing step of glycolysis; Belongs to the phosphofructokinase type A (PFKA) family. ATP-dependent PFK group I subfamily. Prokaryotic clade 'B1' sub- subfamily. (320 aa)
ugpBSn-glycerol-3-phosphate ABC transporter periplasmic binding protein; sn-glycerol-3-phosphate and glycerophosphoryl diester-binding protein interacts with the binding protein-dependent transport system UgpACE. (438 aa)
pckPhosphoenolpyruvate carboxykinase [ATP]; Involved in the gluconeogenesis. Catalyzes the conversion of oxaloacetate (OAA) to phosphoenolpyruvate (PEP) through direct phosphoryl transfer between the nucleoside triphosphate and OAA. Belongs to the phosphoenolpyruvate carboxykinase (ATP) family. (540 aa)
galPD-galactose transporter; Uptake of galactose across the boundary membrane with the concomitant transport of protons into the cell (symport system); Belongs to the major facilitator superfamily. Sugar transporter (TC 2.A.1.1) family. (464 aa)
crrGlucose-specific enzyme IIA component of PTS; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II complex composed of PtsG and Crr is involved in glucose transport. The non-phosphorylated EIII-Glc is an inhibitor for uptake of certain sugars such as maltose, melibiose, lactose, and glycerol. Phosphorylated EIII-Glc, however, may be an activator for adenylate cyclase. It is an im [...] (169 aa)
ptsIPEP-protein phosphotransferase of PTS system (enzyme I); General (non sugar-specific) component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active-transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. Enzyme I transfers the phosphoryl group from phosphoenolpyruvate (PEP) to the phosphoryl carrier protein (HPr). Can also use (Z)-3-fluoro-PEP (ZFPEP), (Z)-3-methyl- PEP (ZMePEP), (Z)-3-chloro-PEP (ZClPEP) and (E)-3-chloro-PEP (EClPEP) as alte [...] (575 aa)
ptsHPhosphohistidinoprotein-hexose phosphotransferase component of PTS system (Hpr); General (non sugar-specific) component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active-transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The phosphoryl group from phosphoenolpyruvate (PEP) is transferred to the phosphoryl carrier protein HPr by enzyme I. Phospho-HPr then transfers it to the PTS EIIA domain. (85 aa)
glkGlucokinase; Not highly important in E.coli as glucose is transported into the cell by the PTS system already as glucose 6-phosphate. (321 aa)
manZMannose-specific enzyme IID component of PTS; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II ManXYZ PTS system is involved in mannose transport. Also functions as a receptor for bacterial chemotaxis and is required for infection of the cell by bacteriophage lambda where it most likely functions as a pore for penetration of lambda DNA. (283 aa)
fruBFused fructose-specific PTS enzymes: IIA component/HPr component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II FruAB PTS system is involved in fructose transport. (376 aa)
glpTSn-glycerol-3-phosphate transporter; Responsible for glycerol-3-phosphate uptake. (452 aa)
ptsGFused glucose-specific PTS enzymes: IIB component/IIC component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II complex composed of PtsG and Crr is involved in glucose transport. Also functions as a chemoreceptor monitoring the environment for changes in sugar concentration and an effector modulating the activity of the transcriptional repressor Mlc. (477 aa)
pfkB6-phosphofructokinase II; Catalyzes the phosphorylation of D-fructose 6-phosphate to fructose 1,6-bisphosphate by ATP, the first committing step of glycolysis. (309 aa)
ppsAPhosphoenolpyruvate synthase; Catalyzes the phosphorylation of pyruvate to phosphoenolpyruvate. (792 aa)
nagBGlucosamine-6-phosphate deaminase; Catalyzes the reversible isomerization-deamination of glucosamine 6-phosphate (GlcN6P) to form fructose 6-phosphate (Fru6P) and ammonium ion; Belongs to the glucosamine/galactosamine-6-phosphate isomerase family. NagB subfamily. (266 aa)
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (28%) [HD]