STRINGSTRING
ruvC ruvC ruvA ruvA ruvB ruvB ARD38292.1 ARD38292.1 ARD38664.1 ARD38664.1 ARD39093.1 ARD39093.1 recO recO dnaQ dnaQ recA recA B6E78_08385 B6E78_08385 ARD39477.1 ARD39477.1 ARD39543.1 ARD39543.1 priA priA polA polA ARD39868.1 ARD39868.1 recF recF recG recG ARD40247.1 ARD40247.1 recC recC recB recB recD recD ARD40486.1 ARD40486.1 ARD40665.1 ARD40665.1 dnaX dnaX recR recR
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
ruvCCrossover junction endodeoxyribonuclease RuvC; Nuclease that resolves Holliday junction intermediates in genetic recombination. Cleaves the cruciform structure in supercoiled DNA by nicking to strands with the same polarity at sites symmetrically opposed at the junction in the homologous arms and leaves a 5'-terminal phosphate and a 3'-terminal hydroxyl group. (173 aa)
ruvAHolliday junction branch migration protein RuvA; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing. RuvA stimulates, in the presence of DNA, the weak ATPase activity of RuvB. (202 aa)
ruvBHolliday junction branch migration DNA helicase RuvB; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing. (334 aa)
ARD38292.1DNA polymerase III subunit theta; Derived by automated computational analysis using gene prediction method: Protein Homology. (75 aa)
ARD38664.1DNA polymerase III subunit delta; Derived by automated computational analysis using gene prediction method: Protein Homology. (328 aa)
ARD39093.1DNA polymerase III subunit delta; Derived by automated computational analysis using gene prediction method: Protein Homology. (344 aa)
recODNA repair protein RecO; Involved in DNA repair and RecF pathway recombination. (242 aa)
dnaQDNA polymerase III subunit epsilon; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. The epsilon subunit contain the editing function and is a proofreading 3'- 5' exonuclease. (243 aa)
recARecombinase RecA; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family. (353 aa)
B6E78_08385Peptide chain release factor 2; Frameshifted; Derived by automated computational analysis using gene prediction method: Protein Homology. (577 aa)
ARD39477.1DNA polymerase III subunit chi; Binds to single-strand binding (SSB) protein and acts as a bridge between the DnaX clamp loader complex and the SSB; Derived by automated computational analysis using gene prediction method: Protein Homology. (149 aa)
ARD39543.1ssDNA-binding protein; Plays an important role in DNA replication, recombination and repair. Binds to ssDNA and to an array of partner proteins to recruit them to their sites of action during DNA metabolism. (182 aa)
priAPrimosomal protein N; Involved in the restart of stalled replication forks. Recognizes and binds the arrested nascent DNA chain at stalled replication forks. It can open the DNA duplex, via its helicase activity, and promote assembly of the primosome and loading of the major replicative helicase DnaB onto DNA; Belongs to the helicase family. PriA subfamily. (731 aa)
polADNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity; Belongs to the DNA polymerase type-A family. (930 aa)
ARD39868.1DNA polymerase III subunit beta; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP- independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation of [...] (366 aa)
recFDNA replication and repair protein RecF; The RecF protein is involved in DNA metabolism; it is required for DNA replication and normal SOS inducibility. RecF binds preferentially to single-stranded, linear DNA. It also seems to bind ATP. (358 aa)
recGATP-dependent DNA helicase RecG; Critical role in recombination and DNA repair. Helps process Holliday junction intermediates to mature products by catalyzing branch migration. Has a DNA unwinding activity characteristic of a DNA helicase with a 3'- to 5'- polarity. Unwinds branched duplex DNA (Y- DNA); Belongs to the helicase family. RecG subfamily. (693 aa)
ARD40247.1DNA polymerase III subunit psi; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. This DNA polymerase also exhibits 3' to 5' exonuclease activity. The exact function of the psi subunit is unknown. (136 aa)
recCExodeoxyribonuclease V subunit gamma; A helicase/nuclease that prepares dsDNA breaks (DSB) for recombinational DNA repair. Binds to DSBs and unwinds DNA via a highly rapid and processive ATP-dependent bidirectional helicase activity. Unwinds dsDNA until it encounters a Chi (crossover hotspot instigator) sequence from the 3' direction. Cuts ssDNA a few nucleotides 3' to the Chi site. The properties and activities of the enzyme are changed at Chi. The Chi-altered holoenzyme produces a long 3'-ssDNA overhang and facilitates RecA-binding to the ssDNA for homologous DNA recombination and re [...] (1128 aa)
recBExodeoxyribonuclease V subunit beta; A helicase/nuclease that prepares dsDNA breaks (DSB) for recombinational DNA repair. Binds to DSBs and unwinds DNA via a highly rapid and processive ATP-dependent bidirectional helicase activity. Unwinds dsDNA until it encounters a Chi (crossover hotspot instigator) sequence from the 3' direction. Cuts ssDNA a few nucleotides 3' to the Chi site. The properties and activities of the enzyme are changed at Chi. The Chi-altered holoenzyme produces a long 3'-ssDNA overhang and facilitates RecA-binding to the ssDNA for homologous DNA recombination and rep [...] (1197 aa)
recDExodeoxyribonuclease V subunit alpha; A helicase/nuclease that prepares dsDNA breaks (DSB) for recombinational DNA repair. Binds to DSBs and unwinds DNA via a highly rapid and processive ATP-dependent bidirectional helicase activity. Unwinds dsDNA until it encounters a Chi (crossover hotspot instigator) sequence from the 3' direction. Cuts ssDNA a few nucleotides 3' to the Chi site. The properties and activities of the enzyme are changed at Chi. The Chi-altered holoenzyme produces a long 3'-ssDNA overhang and facilitates RecA-binding to the ssDNA for homologous DNA recombination and re [...] (617 aa)
ARD40486.1DNA polymerase III subunit alpha; Derived by automated computational analysis using gene prediction method: Protein Homology. (1162 aa)
ARD40665.1Prephenate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (179 aa)
dnaXDNA polymerase III subunit gamma/tau; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. This DNA polymerase also exhibits 3' to 5' exonuclease activity. (652 aa)
recRRecombination protein RecR; May play a role in DNA repair. It seems to be involved in an RecBC-independent recombinational process of DNA repair. It may act with RecF and RecO. (201 aa)
Your Current Organism:
Edwardsiella ictaluri
NCBI taxonomy Id: 67780
Other names: ATCC 33202, CCUG 18764, CIP 81.96, DSM 13697, E. ictaluri, JCM 16934, NCTC 12122, SECFDL GA 77-52
Server load: low (38%) [HD]