node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
CACNA1D | CACNA1S | ENSP00000288139 | ENSP00000355192 | Voltage-dependent L-type calcium channel subunit alpha-1D; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1D gives rise to L-type calcium currents. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. They are blocked by dihydropyridines (DHP), phenylalkylamines, and by benzothiazepines. B [...] | Voltage-dependent L-type calcium channel subunit alpha-1S; Pore-forming, alpha-1S subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents in skeletal muscle. Calcium channels containing the alpha-1S subunit play an important role in excitation-contraction coupling in skeletal muscle via their interaction with RYR1, which triggers Ca(2+) release from the sarcplasmic reticulum and ultimately results in muscle contraction. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. | 0.975 |
CACNA1D | CACNA2D1 | ENSP00000288139 | ENSP00000349320 | Voltage-dependent L-type calcium channel subunit alpha-1D; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1D gives rise to L-type calcium currents. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. They are blocked by dihydropyridines (DHP), phenylalkylamines, and by benzothiazepines. B [...] | Voltage-dependent calcium channel subunit alpha-2/delta-1; The alpha-2/delta subunit of voltage-dependent calcium channels regulates calcium current density and activation/inactivation kinetics of the calcium channel. Plays an important role in excitation- contraction coupling (By similarity). | 0.999 |
CACNA1D | CACNA2D4 | ENSP00000288139 | ENSP00000372169 | Voltage-dependent L-type calcium channel subunit alpha-1D; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1D gives rise to L-type calcium currents. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. They are blocked by dihydropyridines (DHP), phenylalkylamines, and by benzothiazepines. B [...] | Voltage-dependent calcium channel subunit alpha-2/delta-4; The alpha-2/delta subunit of voltage-dependent calcium channels regulates calcium current density and activation/inactivation kinetics of the calcium channel. | 0.971 |
CACNA1D | CACNB1 | ENSP00000288139 | ENSP00000377840 | Voltage-dependent L-type calcium channel subunit alpha-1D; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1D gives rise to L-type calcium currents. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. They are blocked by dihydropyridines (DHP), phenylalkylamines, and by benzothiazepines. B [...] | Voltage-dependent L-type calcium channel subunit beta-1; Regulatory subunit of L-type calcium channels. Regulates the activity of L-type calcium channels that contain CACNA1A as pore- forming subunit (By similarity). Regulates the activity of L-type calcium channels that contain CACNA1C as pore-forming subunit and increases the presence of the channel complex at the cell membrane. Required for functional expression L-type calcium channels that contain CACNA1D as pore-forming subunit. Regulates the activity of L-type calcium channels that contain CACNA1B as pore-forming subunit. | 0.990 |
CACNA1D | CACNG1 | ENSP00000288139 | ENSP00000226021 | Voltage-dependent L-type calcium channel subunit alpha-1D; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1D gives rise to L-type calcium currents. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. They are blocked by dihydropyridines (DHP), phenylalkylamines, and by benzothiazepines. B [...] | Voltage-dependent calcium channel gamma-1 subunit; Regulatory subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents in skeletal muscle. Regulates channel inactivation kinetics; Belongs to the PMP-22/EMP/MP20 family. CACNG subfamily. | 0.995 |
CACNA1D | CACNG3 | ENSP00000288139 | ENSP00000005284 | Voltage-dependent L-type calcium channel subunit alpha-1D; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1D gives rise to L-type calcium currents. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. They are blocked by dihydropyridines (DHP), phenylalkylamines, and by benzothiazepines. B [...] | Voltage-dependent calcium channel gamma-3 subunit; Regulates the trafficking to the somatodendritic compartment and gating properties of AMPA-selective glutamate receptors (AMPARs). Promotes their targeting to the cell membrane and synapses and modulates their gating properties by slowing their rates of activation, deactivation and desensitization. Does not show subunit-specific AMPA receptor regulation and regulates all AMPAR subunits. Thought to stabilize the calcium channel in an inactivated (closed) state. | 0.957 |
CACNA1D | CACNG4 | ENSP00000288139 | ENSP00000262138 | Voltage-dependent L-type calcium channel subunit alpha-1D; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1D gives rise to L-type calcium currents. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. They are blocked by dihydropyridines (DHP), phenylalkylamines, and by benzothiazepines. B [...] | Voltage-dependent calcium channel gamma-4 subunit; Regulates the activity of L-type calcium channels that contain CACNA1C as pore-forming subunit. Regulates the trafficking and gating properties of AMPA-selective glutamate receptors (AMPARs), including GRIA1 and GRIA4. Promotes their targeting to the cell membrane and synapses and modulates their gating properties by slowing their rates of activation, deactivation and desensitization and by mediating their resensitization. Belongs to the PMP-22/EMP/MP20 family. CACNG subfamily. | 0.986 |
CACNA1D | CACNG6 | ENSP00000288139 | ENSP00000252729 | Voltage-dependent L-type calcium channel subunit alpha-1D; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1D gives rise to L-type calcium currents. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. They are blocked by dihydropyridines (DHP), phenylalkylamines, and by benzothiazepines. B [...] | Voltage-dependent calcium channel gamma-6 subunit; Regulates the activity of L-type calcium channels that contain CACNA1C as pore-forming subunit; Belongs to the PMP-22/EMP/MP20 family. CACNG subfamily. | 0.901 |
CACNA1D | CACNG7 | ENSP00000288139 | ENSP00000375647 | Voltage-dependent L-type calcium channel subunit alpha-1D; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1D gives rise to L-type calcium currents. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. They are blocked by dihydropyridines (DHP), phenylalkylamines, and by benzothiazepines. B [...] | Voltage-dependent calcium channel gamma-7 subunit; Regulates the activity of L-type calcium channels that contain CACNA1C as pore-forming subunit. Regulates the trafficking and gating properties of AMPA-selective glutamate receptors (AMPARs). Promotes their targeting to the cell membrane and synapses and modulates their gating properties by slowing their rates of activation, deactivation and desensitization and by mediating their resensitization. Displays subunit-specific AMPA receptor regulation. Shows specificity only for GRIA1 and GRIA2. Belongs to the PMP-22/EMP/MP20 family. CACNG [...] | 0.977 |
CACNA1S | CACNA1D | ENSP00000355192 | ENSP00000288139 | Voltage-dependent L-type calcium channel subunit alpha-1S; Pore-forming, alpha-1S subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents in skeletal muscle. Calcium channels containing the alpha-1S subunit play an important role in excitation-contraction coupling in skeletal muscle via their interaction with RYR1, which triggers Ca(2+) release from the sarcplasmic reticulum and ultimately results in muscle contraction. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. | Voltage-dependent L-type calcium channel subunit alpha-1D; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1D gives rise to L-type calcium currents. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. They are blocked by dihydropyridines (DHP), phenylalkylamines, and by benzothiazepines. B [...] | 0.975 |
CACNA1S | CACNA2D1 | ENSP00000355192 | ENSP00000349320 | Voltage-dependent L-type calcium channel subunit alpha-1S; Pore-forming, alpha-1S subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents in skeletal muscle. Calcium channels containing the alpha-1S subunit play an important role in excitation-contraction coupling in skeletal muscle via their interaction with RYR1, which triggers Ca(2+) release from the sarcplasmic reticulum and ultimately results in muscle contraction. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. | Voltage-dependent calcium channel subunit alpha-2/delta-1; The alpha-2/delta subunit of voltage-dependent calcium channels regulates calcium current density and activation/inactivation kinetics of the calcium channel. Plays an important role in excitation- contraction coupling (By similarity). | 0.999 |
CACNA1S | CACNA2D4 | ENSP00000355192 | ENSP00000372169 | Voltage-dependent L-type calcium channel subunit alpha-1S; Pore-forming, alpha-1S subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents in skeletal muscle. Calcium channels containing the alpha-1S subunit play an important role in excitation-contraction coupling in skeletal muscle via their interaction with RYR1, which triggers Ca(2+) release from the sarcplasmic reticulum and ultimately results in muscle contraction. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. | Voltage-dependent calcium channel subunit alpha-2/delta-4; The alpha-2/delta subunit of voltage-dependent calcium channels regulates calcium current density and activation/inactivation kinetics of the calcium channel. | 0.959 |
CACNA1S | CACNB1 | ENSP00000355192 | ENSP00000377840 | Voltage-dependent L-type calcium channel subunit alpha-1S; Pore-forming, alpha-1S subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents in skeletal muscle. Calcium channels containing the alpha-1S subunit play an important role in excitation-contraction coupling in skeletal muscle via their interaction with RYR1, which triggers Ca(2+) release from the sarcplasmic reticulum and ultimately results in muscle contraction. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. | Voltage-dependent L-type calcium channel subunit beta-1; Regulatory subunit of L-type calcium channels. Regulates the activity of L-type calcium channels that contain CACNA1A as pore- forming subunit (By similarity). Regulates the activity of L-type calcium channels that contain CACNA1C as pore-forming subunit and increases the presence of the channel complex at the cell membrane. Required for functional expression L-type calcium channels that contain CACNA1D as pore-forming subunit. Regulates the activity of L-type calcium channels that contain CACNA1B as pore-forming subunit. | 0.995 |
CACNA1S | CACNG1 | ENSP00000355192 | ENSP00000226021 | Voltage-dependent L-type calcium channel subunit alpha-1S; Pore-forming, alpha-1S subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents in skeletal muscle. Calcium channels containing the alpha-1S subunit play an important role in excitation-contraction coupling in skeletal muscle via their interaction with RYR1, which triggers Ca(2+) release from the sarcplasmic reticulum and ultimately results in muscle contraction. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. | Voltage-dependent calcium channel gamma-1 subunit; Regulatory subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents in skeletal muscle. Regulates channel inactivation kinetics; Belongs to the PMP-22/EMP/MP20 family. CACNG subfamily. | 0.997 |
CACNA1S | CACNG3 | ENSP00000355192 | ENSP00000005284 | Voltage-dependent L-type calcium channel subunit alpha-1S; Pore-forming, alpha-1S subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents in skeletal muscle. Calcium channels containing the alpha-1S subunit play an important role in excitation-contraction coupling in skeletal muscle via their interaction with RYR1, which triggers Ca(2+) release from the sarcplasmic reticulum and ultimately results in muscle contraction. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. | Voltage-dependent calcium channel gamma-3 subunit; Regulates the trafficking to the somatodendritic compartment and gating properties of AMPA-selective glutamate receptors (AMPARs). Promotes their targeting to the cell membrane and synapses and modulates their gating properties by slowing their rates of activation, deactivation and desensitization. Does not show subunit-specific AMPA receptor regulation and regulates all AMPAR subunits. Thought to stabilize the calcium channel in an inactivated (closed) state. | 0.916 |
CACNA1S | CACNG4 | ENSP00000355192 | ENSP00000262138 | Voltage-dependent L-type calcium channel subunit alpha-1S; Pore-forming, alpha-1S subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents in skeletal muscle. Calcium channels containing the alpha-1S subunit play an important role in excitation-contraction coupling in skeletal muscle via their interaction with RYR1, which triggers Ca(2+) release from the sarcplasmic reticulum and ultimately results in muscle contraction. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. | Voltage-dependent calcium channel gamma-4 subunit; Regulates the activity of L-type calcium channels that contain CACNA1C as pore-forming subunit. Regulates the trafficking and gating properties of AMPA-selective glutamate receptors (AMPARs), including GRIA1 and GRIA4. Promotes their targeting to the cell membrane and synapses and modulates their gating properties by slowing their rates of activation, deactivation and desensitization and by mediating their resensitization. Belongs to the PMP-22/EMP/MP20 family. CACNG subfamily. | 0.918 |
CACNA1S | CACNG6 | ENSP00000355192 | ENSP00000252729 | Voltage-dependent L-type calcium channel subunit alpha-1S; Pore-forming, alpha-1S subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents in skeletal muscle. Calcium channels containing the alpha-1S subunit play an important role in excitation-contraction coupling in skeletal muscle via their interaction with RYR1, which triggers Ca(2+) release from the sarcplasmic reticulum and ultimately results in muscle contraction. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. | Voltage-dependent calcium channel gamma-6 subunit; Regulates the activity of L-type calcium channels that contain CACNA1C as pore-forming subunit; Belongs to the PMP-22/EMP/MP20 family. CACNG subfamily. | 0.927 |
CACNA1S | CACNG7 | ENSP00000355192 | ENSP00000375647 | Voltage-dependent L-type calcium channel subunit alpha-1S; Pore-forming, alpha-1S subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents in skeletal muscle. Calcium channels containing the alpha-1S subunit play an important role in excitation-contraction coupling in skeletal muscle via their interaction with RYR1, which triggers Ca(2+) release from the sarcplasmic reticulum and ultimately results in muscle contraction. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. | Voltage-dependent calcium channel gamma-7 subunit; Regulates the activity of L-type calcium channels that contain CACNA1C as pore-forming subunit. Regulates the trafficking and gating properties of AMPA-selective glutamate receptors (AMPARs). Promotes their targeting to the cell membrane and synapses and modulates their gating properties by slowing their rates of activation, deactivation and desensitization and by mediating their resensitization. Displays subunit-specific AMPA receptor regulation. Shows specificity only for GRIA1 and GRIA2. Belongs to the PMP-22/EMP/MP20 family. CACNG [...] | 0.913 |
CACNA2D1 | CACNA1D | ENSP00000349320 | ENSP00000288139 | Voltage-dependent calcium channel subunit alpha-2/delta-1; The alpha-2/delta subunit of voltage-dependent calcium channels regulates calcium current density and activation/inactivation kinetics of the calcium channel. Plays an important role in excitation- contraction coupling (By similarity). | Voltage-dependent L-type calcium channel subunit alpha-1D; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1D gives rise to L-type calcium currents. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. They are blocked by dihydropyridines (DHP), phenylalkylamines, and by benzothiazepines. B [...] | 0.999 |
CACNA2D1 | CACNA1S | ENSP00000349320 | ENSP00000355192 | Voltage-dependent calcium channel subunit alpha-2/delta-1; The alpha-2/delta subunit of voltage-dependent calcium channels regulates calcium current density and activation/inactivation kinetics of the calcium channel. Plays an important role in excitation- contraction coupling (By similarity). | Voltage-dependent L-type calcium channel subunit alpha-1S; Pore-forming, alpha-1S subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents in skeletal muscle. Calcium channels containing the alpha-1S subunit play an important role in excitation-contraction coupling in skeletal muscle via their interaction with RYR1, which triggers Ca(2+) release from the sarcplasmic reticulum and ultimately results in muscle contraction. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. | 0.999 |