| node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
| ATP2A1 | CACNB2 | ENSP00000349595 | ENSP00000320025 | Sarcoplasmic/endoplasmic reticulum calcium ATPase 1; Key regulator of striated muscle performance by acting as the major Ca(2+) ATPase responsible for the reuptake of cytosolic Ca(2+) into the sarcoplasmic reticulum. Catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen (By similarity). Contributes to calcium sequestration involved in muscular excitation/contraction ; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIA subfamily. | Voltage-dependent L-type calcium channel subunit beta-2; The beta subunit of voltage-dependent calcium channels contributes to the function of the calcium channel by increasing peak calcium current, shifting the voltage dependencies of activation and inactivation, modulating G protein inhibition and controlling the alpha-1 subunit membrane targeting. | 0.560 |
| ATP2A1 | MICU1 | ENSP00000349595 | ENSP00000493232 | Sarcoplasmic/endoplasmic reticulum calcium ATPase 1; Key regulator of striated muscle performance by acting as the major Ca(2+) ATPase responsible for the reuptake of cytosolic Ca(2+) into the sarcoplasmic reticulum. Catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen (By similarity). Contributes to calcium sequestration involved in muscular excitation/contraction ; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIA subfamily. | Calcium uptake protein 1, mitochondrial; Key regulator of mitochondrial calcium uniporter (MCU) that senses calcium level via its EF-hand domains. MICU1 and MICU2 form a disulfide-linked heterodimer that stimulates and inhibits MCU activity, depending on the concentration of calcium. MICU1 acts both as an activator or inhibitor of mitochondrial calcium uptake. Acts as a gatekeeper of MCU at low concentration of calcium, preventing channel opening. Enhances MCU opening at high calcium concentration, allowing a rapid response of mitochondria to calcium signals generated in the cytoplasm. [...] | 0.424 |
| ATP2A1 | ORAI1 | ENSP00000349595 | ENSP00000482568 | Sarcoplasmic/endoplasmic reticulum calcium ATPase 1; Key regulator of striated muscle performance by acting as the major Ca(2+) ATPase responsible for the reuptake of cytosolic Ca(2+) into the sarcoplasmic reticulum. Catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen (By similarity). Contributes to calcium sequestration involved in muscular excitation/contraction ; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIA subfamily. | Calcium release-activated calcium channel protein 1; Ca(2+) release-activated Ca(2+) (CRAC) channel subunit which mediates Ca(2+) influx following depletion of intracellular Ca(2+) stores and channel activation by the Ca(2+) sensor, STIM1. CRAC channels are the main pathway for Ca(2+) influx in T-cells and promote the immune response to pathogens by activating the transcription factor NFAT. Belongs to the Orai family. | 0.421 |
| CACNA1D | CACNA1G | ENSP00000288139 | ENSP00000352011 | Voltage-dependent L-type calcium channel subunit alpha-1D; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1D gives rise to L-type calcium currents. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. They are blocked by dihydropyridines (DHP), phenylalkylamines, and by benzothiazepines. B [...] | Voltage-dependent T-type calcium channel subunit alpha-1G; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1G gives rise to T-type calcium currents. T-type calcium channels belong to the 'low-voltage activated (LVA)' group and are strongly blocked by mibefradil. A particularity of this type of channel is an opening at quite neg [...] | 0.852 |
| CACNA1D | CACNA1H | ENSP00000288139 | ENSP00000334198 | Voltage-dependent L-type calcium channel subunit alpha-1D; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1D gives rise to L-type calcium currents. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. They are blocked by dihydropyridines (DHP), phenylalkylamines, and by benzothiazepines. B [...] | Voltage-dependent T-type calcium channel subunit alpha-1H; Voltage-sensitive calcium channel that gives rise to T-type calcium currents. T-type calcium channels belong to the 'low-voltage activated (LVA)' group. A particularity of this type of channel is an opening at quite negative potentials, and a voltage-dependent inactivation. T-type channels serve pacemaking functions in both central neurons and cardiac nodal cells and support calcium signaling in secretory cells and vascular smooth muscle (Probable). They may also be involved in the modulation of firing patterns of neurons. In t [...] | 0.856 |
| CACNA1D | CACNA1I | ENSP00000288139 | ENSP00000385019 | Voltage-dependent L-type calcium channel subunit alpha-1D; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1D gives rise to L-type calcium currents. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. They are blocked by dihydropyridines (DHP), phenylalkylamines, and by benzothiazepines. B [...] | Voltage-dependent T-type calcium channel subunit alpha-1I; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. This channel gives rise to T-type calcium currents. T-type calcium channels belong to the 'low-voltage activated (LVA)' group and are strongly blocked by nickel and mibefradil. A particularity of this type of channels is an opening at quite [...] | 0.654 |
| CACNA1D | CACNB2 | ENSP00000288139 | ENSP00000320025 | Voltage-dependent L-type calcium channel subunit alpha-1D; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1D gives rise to L-type calcium currents. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. They are blocked by dihydropyridines (DHP), phenylalkylamines, and by benzothiazepines. B [...] | Voltage-dependent L-type calcium channel subunit beta-2; The beta subunit of voltage-dependent calcium channels contributes to the function of the calcium channel by increasing peak calcium current, shifting the voltage dependencies of activation and inactivation, modulating G protein inhibition and controlling the alpha-1 subunit membrane targeting. | 0.997 |
| CACNA1D | SLC8A1 | ENSP00000288139 | ENSP00000384763 | Voltage-dependent L-type calcium channel subunit alpha-1D; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1D gives rise to L-type calcium currents. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. They are blocked by dihydropyridines (DHP), phenylalkylamines, and by benzothiazepines. B [...] | Sodium/calcium exchanger 1; Mediates the exchange of one Ca(2+) ion against three to four Na(+) ions across the cell membrane, and thereby contributes to the regulation of cytoplasmic Ca(2+) levels and Ca(2+)-dependent cellular processes. Contributes to Ca(2+) transport during excitation-contraction coupling in muscle. In a first phase, voltage-gated channels mediate the rapid increase of cytoplasmic Ca(2+) levels due to release of Ca(2+) stores from the endoplasmic reticulum. SLC8A1 mediates the export of Ca(2+) from the cell during the next phase, so that cytoplasmic Ca(2+) levels ra [...] | 0.515 |
| CACNA1G | CACNA1D | ENSP00000352011 | ENSP00000288139 | Voltage-dependent T-type calcium channel subunit alpha-1G; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1G gives rise to T-type calcium currents. T-type calcium channels belong to the 'low-voltage activated (LVA)' group and are strongly blocked by mibefradil. A particularity of this type of channel is an opening at quite neg [...] | Voltage-dependent L-type calcium channel subunit alpha-1D; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1D gives rise to L-type calcium currents. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. They are blocked by dihydropyridines (DHP), phenylalkylamines, and by benzothiazepines. B [...] | 0.852 |
| CACNA1G | CACNA1H | ENSP00000352011 | ENSP00000334198 | Voltage-dependent T-type calcium channel subunit alpha-1G; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1G gives rise to T-type calcium currents. T-type calcium channels belong to the 'low-voltage activated (LVA)' group and are strongly blocked by mibefradil. A particularity of this type of channel is an opening at quite neg [...] | Voltage-dependent T-type calcium channel subunit alpha-1H; Voltage-sensitive calcium channel that gives rise to T-type calcium currents. T-type calcium channels belong to the 'low-voltage activated (LVA)' group. A particularity of this type of channel is an opening at quite negative potentials, and a voltage-dependent inactivation. T-type channels serve pacemaking functions in both central neurons and cardiac nodal cells and support calcium signaling in secretory cells and vascular smooth muscle (Probable). They may also be involved in the modulation of firing patterns of neurons. In t [...] | 0.944 |
| CACNA1G | CACNA1I | ENSP00000352011 | ENSP00000385019 | Voltage-dependent T-type calcium channel subunit alpha-1G; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1G gives rise to T-type calcium currents. T-type calcium channels belong to the 'low-voltage activated (LVA)' group and are strongly blocked by mibefradil. A particularity of this type of channel is an opening at quite neg [...] | Voltage-dependent T-type calcium channel subunit alpha-1I; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. This channel gives rise to T-type calcium currents. T-type calcium channels belong to the 'low-voltage activated (LVA)' group and are strongly blocked by nickel and mibefradil. A particularity of this type of channels is an opening at quite [...] | 0.963 |
| CACNA1G | CACNB2 | ENSP00000352011 | ENSP00000320025 | Voltage-dependent T-type calcium channel subunit alpha-1G; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1G gives rise to T-type calcium currents. T-type calcium channels belong to the 'low-voltage activated (LVA)' group and are strongly blocked by mibefradil. A particularity of this type of channel is an opening at quite neg [...] | Voltage-dependent L-type calcium channel subunit beta-2; The beta subunit of voltage-dependent calcium channels contributes to the function of the calcium channel by increasing peak calcium current, shifting the voltage dependencies of activation and inactivation, modulating G protein inhibition and controlling the alpha-1 subunit membrane targeting. | 0.766 |
| CACNA1G | SLC8A1 | ENSP00000352011 | ENSP00000384763 | Voltage-dependent T-type calcium channel subunit alpha-1G; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1G gives rise to T-type calcium currents. T-type calcium channels belong to the 'low-voltage activated (LVA)' group and are strongly blocked by mibefradil. A particularity of this type of channel is an opening at quite neg [...] | Sodium/calcium exchanger 1; Mediates the exchange of one Ca(2+) ion against three to four Na(+) ions across the cell membrane, and thereby contributes to the regulation of cytoplasmic Ca(2+) levels and Ca(2+)-dependent cellular processes. Contributes to Ca(2+) transport during excitation-contraction coupling in muscle. In a first phase, voltage-gated channels mediate the rapid increase of cytoplasmic Ca(2+) levels due to release of Ca(2+) stores from the endoplasmic reticulum. SLC8A1 mediates the export of Ca(2+) from the cell during the next phase, so that cytoplasmic Ca(2+) levels ra [...] | 0.441 |
| CACNA1G | TRPC4 | ENSP00000352011 | ENSP00000486109 | Voltage-dependent T-type calcium channel subunit alpha-1G; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1G gives rise to T-type calcium currents. T-type calcium channels belong to the 'low-voltage activated (LVA)' group and are strongly blocked by mibefradil. A particularity of this type of channel is an opening at quite neg [...] | Short transient receptor potential channel 4; Forms a receptor-activated non-selective calcium permeant cation channel. Acts as a cell-cell contact-dependent endothelial calcium entry channel. Probably operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Mediates cation entry, with an enhanced permeability to barium over calcium. May also be activated by intracellular calcium store depletion; Belongs to the transient receptor (TC 1.A.4) family. STrpC subfamily. TRPC4 sub-subfamily. | 0.925 |
| CACNA1H | CACNA1D | ENSP00000334198 | ENSP00000288139 | Voltage-dependent T-type calcium channel subunit alpha-1H; Voltage-sensitive calcium channel that gives rise to T-type calcium currents. T-type calcium channels belong to the 'low-voltage activated (LVA)' group. A particularity of this type of channel is an opening at quite negative potentials, and a voltage-dependent inactivation. T-type channels serve pacemaking functions in both central neurons and cardiac nodal cells and support calcium signaling in secretory cells and vascular smooth muscle (Probable). They may also be involved in the modulation of firing patterns of neurons. In t [...] | Voltage-dependent L-type calcium channel subunit alpha-1D; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1D gives rise to L-type calcium currents. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. They are blocked by dihydropyridines (DHP), phenylalkylamines, and by benzothiazepines. B [...] | 0.856 |
| CACNA1H | CACNA1G | ENSP00000334198 | ENSP00000352011 | Voltage-dependent T-type calcium channel subunit alpha-1H; Voltage-sensitive calcium channel that gives rise to T-type calcium currents. T-type calcium channels belong to the 'low-voltage activated (LVA)' group. A particularity of this type of channel is an opening at quite negative potentials, and a voltage-dependent inactivation. T-type channels serve pacemaking functions in both central neurons and cardiac nodal cells and support calcium signaling in secretory cells and vascular smooth muscle (Probable). They may also be involved in the modulation of firing patterns of neurons. In t [...] | Voltage-dependent T-type calcium channel subunit alpha-1G; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1G gives rise to T-type calcium currents. T-type calcium channels belong to the 'low-voltage activated (LVA)' group and are strongly blocked by mibefradil. A particularity of this type of channel is an opening at quite neg [...] | 0.944 |
| CACNA1H | CACNA1I | ENSP00000334198 | ENSP00000385019 | Voltage-dependent T-type calcium channel subunit alpha-1H; Voltage-sensitive calcium channel that gives rise to T-type calcium currents. T-type calcium channels belong to the 'low-voltage activated (LVA)' group. A particularity of this type of channel is an opening at quite negative potentials, and a voltage-dependent inactivation. T-type channels serve pacemaking functions in both central neurons and cardiac nodal cells and support calcium signaling in secretory cells and vascular smooth muscle (Probable). They may also be involved in the modulation of firing patterns of neurons. In t [...] | Voltage-dependent T-type calcium channel subunit alpha-1I; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. This channel gives rise to T-type calcium currents. T-type calcium channels belong to the 'low-voltage activated (LVA)' group and are strongly blocked by nickel and mibefradil. A particularity of this type of channels is an opening at quite [...] | 0.979 |
| CACNA1H | CACNB2 | ENSP00000334198 | ENSP00000320025 | Voltage-dependent T-type calcium channel subunit alpha-1H; Voltage-sensitive calcium channel that gives rise to T-type calcium currents. T-type calcium channels belong to the 'low-voltage activated (LVA)' group. A particularity of this type of channel is an opening at quite negative potentials, and a voltage-dependent inactivation. T-type channels serve pacemaking functions in both central neurons and cardiac nodal cells and support calcium signaling in secretory cells and vascular smooth muscle (Probable). They may also be involved in the modulation of firing patterns of neurons. In t [...] | Voltage-dependent L-type calcium channel subunit beta-2; The beta subunit of voltage-dependent calcium channels contributes to the function of the calcium channel by increasing peak calcium current, shifting the voltage dependencies of activation and inactivation, modulating G protein inhibition and controlling the alpha-1 subunit membrane targeting. | 0.856 |
| CACNA1H | TRPC4 | ENSP00000334198 | ENSP00000486109 | Voltage-dependent T-type calcium channel subunit alpha-1H; Voltage-sensitive calcium channel that gives rise to T-type calcium currents. T-type calcium channels belong to the 'low-voltage activated (LVA)' group. A particularity of this type of channel is an opening at quite negative potentials, and a voltage-dependent inactivation. T-type channels serve pacemaking functions in both central neurons and cardiac nodal cells and support calcium signaling in secretory cells and vascular smooth muscle (Probable). They may also be involved in the modulation of firing patterns of neurons. In t [...] | Short transient receptor potential channel 4; Forms a receptor-activated non-selective calcium permeant cation channel. Acts as a cell-cell contact-dependent endothelial calcium entry channel. Probably operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Mediates cation entry, with an enhanced permeability to barium over calcium. May also be activated by intracellular calcium store depletion; Belongs to the transient receptor (TC 1.A.4) family. STrpC subfamily. TRPC4 sub-subfamily. | 0.924 |
| CACNA1H | TRPV4 | ENSP00000334198 | ENSP00000406191 | Voltage-dependent T-type calcium channel subunit alpha-1H; Voltage-sensitive calcium channel that gives rise to T-type calcium currents. T-type calcium channels belong to the 'low-voltage activated (LVA)' group. A particularity of this type of channel is an opening at quite negative potentials, and a voltage-dependent inactivation. T-type channels serve pacemaking functions in both central neurons and cardiac nodal cells and support calcium signaling in secretory cells and vascular smooth muscle (Probable). They may also be involved in the modulation of firing patterns of neurons. In t [...] | Transient receptor potential cation channel subfamily V member 4; Non-selective calcium permeant cation channel involved in osmotic sensitivity and mechanosensitivity. Activation by exposure to hypotonicity within the physiological range exhibits an outward rectification. Also activated by heat, low pH, citrate and phorbol esters. Increase of intracellular Ca(2+) potentiates currents. Channel activity seems to be regulated by a calmodulin- dependent mechanism with a negative feedback mechanism. Promotes cell-cell junction formation in skin keratinocytes and plays an important role in t [...] | 0.417 |