STRINGSTRING
TARS3 TARS3 KARS1 KARS1 FARSA FARSA FARS2 FARS2 NARS2 NARS2 DARS1 DARS1 EIF2AK4 EIF2AK4 NARS1 NARS1 HARS1 HARS1 SARS2-2 SARS2-2 SARS2 SARS2 HARS2 HARS2 DARS2 DARS2 TARS1 TARS1 GARS1 GARS1 PARS2 PARS2 SARS1 SARS1 TARS2 TARS2 EPRS1 EPRS1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
TARS3Threonine--tRNA ligase 2, cytoplasmic; Catalyzes the attachment of threonine to tRNA(Thr) in a two- step reaction: threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr). Also edits incorrectly charged tRNA(Thr) via its editing domain, at the post- transfer stage; Belongs to the class-II aminoacyl-tRNA synthetase family. (802 aa)
KARS1Lysine--tRNA ligase; Catalyzes the specific attachment of an amino acid to its cognate tRNA in a 2 step reaction: the amino acid (AA) is first activated by ATP to form AA-AMP and then transferred to the acceptor end of the tRNA. When secreted, acts as a signaling molecule that induces immune response through the activation of monocyte/macrophages. Catalyzes the synthesis of the signaling molecule diadenosine tetraphosphate (Ap4A), and thereby mediates disruption of the complex between HINT1 and MITF and the concomitant activation of MITF transcriptional activity. (625 aa)
FARSAphenylalanyl-tRNA synthetase subunit alpha. (508 aa)
FARS2Phenylalanine--tRNA ligase, mitochondrial; Is responsible for the charging of tRNA(Phe) with phenylalanine in mitochondrial translation. To a lesser extent, also catalyzes direct attachment of m-Tyr (an oxidized version of Phe) to tRNA(Phe), thereby opening the way for delivery of the misacylated tRNA to the ribosome and incorporation of ROS-damaged amino acid into proteins; Belongs to the class-II aminoacyl-tRNA synthetase family. (451 aa)
NARS2Probable asparagine--tRNA ligase, mitochondrial; asparaginyl-tRNA synthetase 2, mitochondrial; Belongs to the class-II aminoacyl-tRNA synthetase family. (477 aa)
DARS1Aspartate--tRNA ligase, cytoplasmic; Catalyzes the specific attachment of an amino acid to its cognate tRNA in a 2 step reaction: the amino acid (AA) is first activated by ATP to form AA-AMP and then transferred to the acceptor end of the tRNA; Belongs to the class-II aminoacyl-tRNA synthetase family. Type 2 subfamily. (501 aa)
EIF2AK4eIF-2-alpha kinase GCN2; Metabolic-stress sensing protein kinase that phosphorylates the alpha subunit of eukaryotic translation initiation factor 2 (eIF-2- alpha/EIF2S1) on 'Ser-52' in response to low amino acid availability. Plays a role as an activator of the integrated stress response (ISR) required for adapatation to amino acid starvation. Converts phosphorylated eIF-2-alpha/EIF2S1 either to a competitive inhibitor of the translation initiation factor eIF-2B, leading to a global protein synthesis repression, and thus to a reduced overall utilization of amino acids, or to a transla [...] (1649 aa)
NARS1Asparagine--tRNA ligase, cytoplasmic; Catalyzes the attachment of asparagine to tRNA(Asn) in a two- step reaction: asparagine is first activated by ATP to form Asn-AMP and then transferred to the acceptor end of tRNA(Asn). In addition to its essential role in protein synthesis, acts as a signaling molecule that induced migration of CCR3-expressing cells. (548 aa)
HARS1Histidine--tRNA ligase, cytoplasmic; Catalyzes the ATP-dependent ligation of histidine to the 3'- end of its cognate tRNA, via the formation of an aminoacyl-adenylate intermediate (His-AMP). Plays a role in axon guidance ; Belongs to the class-II aminoacyl-tRNA synthetase family. (509 aa)
SARS2-2Uncharacterized protein. (588 aa)
SARS2Serine--tRNA ligase, mitochondrial; Catalyzes the attachment of serine to tRNA(Ser). Is also probably able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L-seryl-tRNA(Sec), which will be further converted into selenocysteinyl-tRNA(Sec). (520 aa)
HARS2Histidine--tRNA ligase, mitochondrial; Mitochondrial aminoacyl-tRNA synthetase that catalyzes the ATP-dependent ligation of histidine to the 3'-end of its cognate tRNA, via the formation of an aminoacyl-adenylate intermediate (His-AMP). (512 aa)
DARS2Aspartate--tRNA ligase, mitochondrial; aspartyl-tRNA synthetase 2, mitochondrial. (645 aa)
TARS1Threonine--tRNA ligase 1, cytoplasmic; Catalyzes the attachment of threonine to tRNA(Thr) in a two- step reaction: threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr). Also edits incorrectly charged tRNA(Thr) via its editing domain, at the post-transfer stage (By similarity); Belongs to the class-II aminoacyl-tRNA synthetase family. (756 aa)
GARS1Glycine--tRNA ligase; Catalyzes the ATP-dependent ligation of glycine to the 3'-end of its cognate tRNA, via the formation of an aminoacyl-adenylate intermediate (Gly-AMP). Also produces diadenosine tetraphosphate (Ap4A), a universal pleiotropic signaling molecule needed for cell regulation pathways, by direct condensation of 2 ATPs. Thereby, may play a special role in Ap4A homeostasis. Belongs to the class-II aminoacyl-tRNA synthetase family. (739 aa)
PARS2Probable proline--tRNA ligase, mitochondrial; prolyl-tRNA synthetase 2, mitochondrial. (475 aa)
SARS1Serine--tRNA ligase, cytoplasmic; Catalyzes the attachment of serine to tRNA(Ser) in a two-step reaction: serine is first activated by ATP to form Ser-AMP and then transferred to the acceptor end of tRNA(Ser). Is probably also able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L-seryl-tRNA(Sec), which will be further converted into selenocysteinyl-tRNA(Sec). In the nucleus, binds to the VEGFA core promoter and prevents MYC binding and transcriptional activation by MYC. Recruits SIRT2 to the VEGFA promoter, promoting deacetylation of histone H4 at 'Lys-16' (H4K16). [...] (536 aa)
TARS2Threonine--tRNA ligase, mitochondrial; Catalyzes the attachment of threonine to tRNA(Thr) in a two- step reaction: threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr). Also edits incorrectly charged tRNA(Thr) via its editing domain. (718 aa)
EPRS1Bifunctional glutamate/proline--tRNA ligase; Multifunctional protein which is primarily part of the aminoacyl-tRNA synthetase multienzyme complex, also know as multisynthetase complex, that catalyzes the attachment of the cognate amino acid to the corresponding tRNA in a two-step reaction: the amino acid is first activated by ATP to form a covalent intermediate with AMP and is then transferred to the acceptor end of the cognate tRNA. The phosphorylation of EPRS1, induced by interferon-gamma, dissociates the protein from the aminoacyl-tRNA synthetase multienzyme complex and recruits it [...] (1512 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: low (24%) [HD]