STRINGSTRING
PLA2G4C PLA2G4C PLA2G6 PLA2G6 PLA2G4A PLA2G4A PTGS2 PTGS2 PLA2G12B PLA2G12B ALOX5 ALOX5 PLA2G2D PLA2G2D PLA2G5 PLA2G5 PLA2G4F PLA2G4F PLA2G4E PLA2G4E CDKN1A CDKN1A PLA2G10 PLA2G10 HRAS HRAS PLA2G3 PLA2G3 PLA2G12A PLA2G12A TP53 TP53 PLA2G7 PLA2G7 PLA2G4D PLA2G4D SLCO2A1 SLCO2A1 PLA2G1B PLA2G1B
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
PLA2G4CCytosolic phospholipase A2 gamma; Has a preference for arachidonic acid at the sn-2 position of phosphatidylcholine as compared with palmitic acid. (551 aa)
PLA2G685/88 kDa calcium-independent phospholipase A2; Catalyzes the release of fatty acids from phospholipids. It has been implicated in normal phospholipid remodeling, nitric oxide- induced or vasopressin-induced arachidonic acid release and in leukotriene and prostaglandin production. May participate in fas mediated apoptosis and in regulating transmembrane ion flux in glucose- stimulated B-cells. Has a role in cardiolipin (CL) deacylation. Required for both speed and directionality of monocyte MCP1/CCL2- induced chemotaxis through regulation of F-actin polymerization at the pseudopods. (806 aa)
PLA2G4ACytosolic phospholipase A2; Selectively hydrolyzes arachidonyl phospholipids in the sn-2 position releasing arachidonic acid. Together with its lysophospholipid activity, it is implicated in the initiation of the inflammatory response. (749 aa)
PTGS2Prostaglandin G/H synthase 2; Converts arachidonate to prostaglandin H2 (PGH2), a committed step in prostanoid synthesis. Constitutively expressed in some tissues in physiological conditions, such as the endothelium, kidney and brain, and in pathological conditions, such as in cancer. PTGS2 is responsible for production of inflammatory prostaglandins. Up-regulation of PTGS2 is also associated with increased cell adhesion, phenotypic changes, resistance to apoptosis and tumor angiogenesis. In cancer cells, PTGS2 is a key step in the production of prostaglandin E2 (PGE2), which plays imp [...] (604 aa)
PLA2G12BGroup XIIB secretory phospholipase A2-like protein; Not known; does not seem to have catalytic activity. (195 aa)
ALOX5Arachidonate 5-lipoxygenase; Catalyzes the first step in leukotriene biosynthesis, and thereby plays a role in inflammatory processes. Belongs to the lipoxygenase family. (674 aa)
PLA2G2DGroup IID secretory phospholipase A2; PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. L-alpha-1-palmitoyl-2-linoleoyl phosphatidylethanolamine is more efficiently hydrolyzed than the other phospholipids examined. (145 aa)
PLA2G5Calcium-dependent phospholipase A2; PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. This isozyme hydrolyzes more efficiently L-alpha-1-palmitoyl-2-oleoyl phosphatidylcholine than L- alpha-1-palmitoyl-2-arachidonyl phosphatidylcholine, L-alpha-1- palmitoyl-2-arachidonyl phosphatidylethanolamine, or L-alpha-1- stearoyl-2-arachidonyl phosphatidylinositol. May be involved in the production of lung surfactant, the remodeling or regulation of cardiac muscle. (138 aa)
PLA2G4FCytosolic phospholipase A2 zeta; Calcium-dependent phospholipase A2 that selectively hydrolyzes glycerophospholipids in the sn-2 position. Has higher enzyme activity for phosphatidylethanolamine than phosphatidylcholine (By similarity). (849 aa)
PLA2G4ECytosolic phospholipase A2 epsilon; Calcium-dependent phospholipase A2 that selectively hydrolyzes glycerophospholipids in the sn-2 position. (868 aa)
CDKN1ACyclin-dependent kinase inhibitor 1; May be involved in p53/TP53 mediated inhibition of cellular proliferation in response to DNA damage. Binds to and inhibits cyclin- dependent kinase activity, preventing phosphorylation of critical cyclin-dependent kinase substrates and blocking cell cycle progression. Functions in the nuclear localization and assembly of cyclin D-CDK4 complex and promotes its kinase activity towards RB1. At higher stoichiometric ratios, inhibits the kinase activity of the cyclin D- CDK4 complex. Inhibits DNA synthesis by DNA polymerase delta by competing with POLD3 [...] (164 aa)
PLA2G10Group 10 secretory phospholipase A2; PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. Has a powerful potency for releasing arachidonic acid from cell membrane phospholipids. Prefers phosphatidylethanolamine and phosphatidylcholine liposomes to those of phosphatidylserine. (165 aa)
HRASGTPase HRas, N-terminally processed; Involved in the activation of Ras protein signal transduction. Ras proteins bind GDP/GTP and possess intrinsic GTPase activity. (189 aa)
PLA2G3Group 3 secretory phospholipase A2; PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. Shows an 11-fold preference for phosphatidylglycerol over phosphatidylcholine (PC). Preferential cleavage: 1-palmitoyl-2-linoleoyl-phosphatidylethanolamine (PE) > 1- palmitoyl-2-linoleoyl-PC > 1-palmitoyl-2-arachidonoyl-PC > 1-palmitoyl- 2-arachidonoyl-PE. Plays a role in ciliogenesis. (509 aa)
PLA2G12AGroup XIIA secretory phospholipase A2; PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. Does not exhibit detectable activity toward sn-2-arachidonoyl- or linoleoyl-phosphatidylcholine or -phosphatidylethanolamine. (189 aa)
TP53Cellular tumor antigen p53; Acts as a tumor suppressor in many tumor types; induces growth arrest or apoptosis depending on the physiological circumstances and cell type. Involved in cell cycle regulation as a trans-activator that acts to negatively regulate cell division by controlling a set of genes required for this process. One of the activated genes is an inhibitor of cyclin-dependent kinases. Apoptosis induction seems to be mediated either by stimulation of BAX and FAS antigen expression, or by repression of Bcl-2 expression. Its pro-apoptotic activity is activated via its intera [...] (393 aa)
PLA2G7Platelet-activating factor acetylhydrolase; Modulates the action of platelet-activating factor (PAF) by hydrolyzing the sn-2 ester bond to yield the biologically inactive lyso-PAF. Has a specificity for substrates with a short residue at the sn-2 position. It is inactive against long-chain phospholipids. (441 aa)
PLA2G4DCytosolic phospholipase A2 delta; Calcium-dependent phospholipase A2 that selectively hydrolyzes glycerophospholipids in the sn-2 position. Has a preference for linoleic acid at the sn-2 position. (818 aa)
SLCO2A1Solute carrier organic anion transporter family member 2A1; May mediate the release of newly synthesized prostaglandins from cells, the transepithelial transport of prostaglandins, and the clearance of prostaglandins from the circulation. Transports PGD2, as well as PGE1, PGE2 and PGF2A; Belongs to the organo anion transporter (TC 2.A.60) family. (643 aa)
PLA2G1BPhospholipase A2; PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides, this releases glycerophospholipids and arachidonic acid that serve as the precursors of signal molecules. Belongs to the phospholipase A2 family. (148 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: low (20%) [HD]