STRINGSTRING
uvrB protein (Gallibacterium anatis) - STRING interaction network
"uvrB" - Excinuclease ABC subunit B in Gallibacterium anatis
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
uvrBExcinuclease ABC subunit B; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one UvrB monomer. DNA wrap is dependent on ATP binding by UvrB and probably causes local melting of the DNA helix, facilitating insertion of UvrB beta-hairpin between the DNA strands. Then UvrB probes one DNA strand for the presence of a lesion. If a lesion is found the UvrA subunits dissociate [...] (677 aa)    
Predicted Functional Partners:
uvrA
Excinuclease ABC subunit A; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate (944 aa)
 
  0.998
uvrC
Excinuclease ABC subunit C; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrC both incises the 5’ and 3’ sides of the lesion. The N-terminal half is responsible for the 3’ incision and the C-terminal half is responsible for the 5’ incision (588 aa)
  0.996
rep
ATP-dependent DNA helicase Rep; Rep helicase is a single-stranded DNA-dependent ATPase involved in DNA replication; it can initiate unwinding at a nick in the DNA. It binds to the single-stranded DNA and acts in a progressive fashion along the DNA in the 3’ to 5’ direction (670 aa)
 
  0.954
UMN179_01083
DNA-dependent helicase II (721 aa)
 
  0.868
UMN179_00831
DNA polymerase I (925 aa)
 
     
  0.855
clpP
ATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins (195 aa)
     
 
  0.802
recA
Recombinase A; Can catalyze the hydrolysis of ATP in the presence of single-stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage (355 aa)
   
   
  0.739
ligA
NAD-dependent DNA ligase LigA; DNA ligase that catalyzes the formation of phosphodiester linkages between 5’-phosphoryl and 3’-hydroxyl groups in double-stranded DNA using NAD as a coenzyme and as the energy source for the reaction. It is essential for DNA replication and repair of damaged DNA (671 aa)
 
 
  0.735
lexA
LexA repressor protein; Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair (213 aa)
         
  0.717
recF
Recombination protein F; The RecF protein is involved in DNA metabolism; it is required for DNA replication and normal SOS inducibility. RecF binds preferentially to single-stranded, linear DNA. It also seems to bind ATP (359 aa)
         
  0.707
Your Current Organism:
Gallibacterium anatis
NCBI taxonomy Id: 1005058
Other names: G. anatis, G. anatis UMN179, Gallibacterium, Gallibacterium Christensen et al. 2003 emend. Bisgaard et al. 2009, Gallibacterium anatis, Gallibacterium anatis UMN179, Gallibacterium anatis str. UMN179, Gallibacterium anatis strain UMN179, Pasteurella anatis, Salpingitia sp. 10672/6, Salpingitia sp. 10672/9, Salpingitia sp. 12158, Salpingitia sp. 20558, Salpingitia sp. 36961/sv7, Salpingitia sp. BJ3453, Salpingitia sp. BK3387.2, Salpingitia sp. CCM 5995, Salpingitia sp. Gerl.220, Salpingitia sp. Gerl.3348/80, Salpingitia sp. Gerl.4224, Salpingitia sp. IPDH 697/78, avian Pasteurella haemolytica complex
Server load: low (6%) [HD]