STRINGSTRING
lpxK protein (Gallibacterium anatis) - STRING interaction network
"lpxK" - Tetraacyldisaccharide 4'-kinase in Gallibacterium anatis
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
lpxKTetraacyldisaccharide 4’-kinase; Transfers the gamma-phosphate of ATP to the 4’-position of a tetraacyldisaccharide 1-phosphate intermediate (termed DS-1- P) to form tetraacyldisaccharide 1,4’-bis-phosphate (lipid IVA) (325 aa)    
Predicted Functional Partners:
lpxB
lipid-A-disaccharide synthase; Condensation of UDP-2,3-diacylglucosamine and 2,3- diacylglucosamine-1-phosphate to form lipid A disaccharide, a precursor of lipid A, a phosphorylated glycolipid that anchors the lipopolysaccharide to the outer membrane of the cell (396 aa)
 
 
  0.998
UMN179_01504
3-deoxy-D-manno-octulosonic-acid transferase (424 aa)
  0.998
kdsB
3-deoxy-manno-octulosonate cytidylyltransferase; Activates KDO (a required 8-carbon sugar) for incorporation into bacterial lipopolysaccharide in Gram-negative bacteria (258 aa)
 
   
  0.989
msbA
Lipid transporter ATP-binding/permease; Involved in lipid A export and possibly also in glycerophospholipid export and for biogenesis of the outer membrane. Transmembrane domains (TMD) form a pore in the inner membrane and the ATP-binding domain (NBD) is responsible for energy generation (582 aa)
   
  0.980
lpxA
UDP-N-acetylglucosamine acyltransferase; Involved in the biosynthesis of lipid A, a phosphorylated glycolipid that anchors the lipopolysaccharide to the outer membrane of the cell (262 aa)
 
 
  0.961
lpxC
Hypothetical protein; Catalyzes the hydrolysis of UDP-3-O-myristoyl-N- acetylglucosamine to form UDP-3-O-myristoylglucosamine and acetate, the committed step in lipid A biosynthesis (321 aa)
 
   
  0.957
lpxD
Hypothetical protein; Catalyzes the N-acylation of UDP-3-O-acylglucosamine using 3-hydroxyacyl-ACP as the acyl donor. Is involved in the biosynthesis of lipid A, a phosphorylated glycolipid that anchors the lipopolysaccharide to the outer membrane of the cell (344 aa)
 
   
  0.957
lpxL
Lipid A biosynthesis lauroyl acyltransferase; Catalyzes the transfer of laurate from lauroyl-acyl carrier protein (ACP) to Kdo(2)-lipid IV(A) to form Kdo(2)- (lauroyl)-lipid IV(A) (308 aa)
 
 
  0.915
kdsA
2-dehydro-3-deoxyphosphooctonate aldolase (284 aa)
 
     
  0.910
lpxH
UDP-2,3-diacylglucosamine hydrolase; Catalyzes the hydrolysis of the pyrophosphate bond of UDP-2,3-diacylglucosamine to yield 2,3-diacylglucosamine 1- phosphate (lipid X) and UMP (249 aa)
 
   
  0.899
Your Current Organism:
Gallibacterium anatis
NCBI taxonomy Id: 1005058
Other names: G. anatis, G. anatis UMN179, Gallibacterium, Gallibacterium Christensen et al. 2003 emend. Bisgaard et al. 2009, Gallibacterium anatis, Gallibacterium anatis UMN179, Gallibacterium anatis str. UMN179, Gallibacterium anatis strain UMN179, Pasteurella anatis, Salpingitia sp. 10672/6, Salpingitia sp. 10672/9, Salpingitia sp. 12158, Salpingitia sp. 20558, Salpingitia sp. 36961/sv7, Salpingitia sp. BJ3453, Salpingitia sp. BK3387.2, Salpingitia sp. CCM 5995, Salpingitia sp. Gerl.220, Salpingitia sp. Gerl.3348/80, Salpingitia sp. Gerl.4224, Salpingitia sp. IPDH 697/78, avian Pasteurella haemolytica complex
Server load: low (6%) [HD]