clpP protein (Gallibacterium anatis) - STRING interaction network
"clpP" - ATP-dependent Clp protease proteolytic subunit in Gallibacterium anatis
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
protein homology
Your Input:
Gene Fusion
clpPATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins (195 aa)    
Predicted Functional Partners:
ATP-dependent protease ATP-binding subunit ClpX; ATP-dependent specificity component of the Clp protease. It directs the protease to specific substrates. Can perform chaperone functions in the absence of ClpP (415 aa)
Protein disaggregation chaperone; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE (857 aa)
Hypothetical protein; Involved in protein export. Acts as a chaperone by maintaining the newly synthesized protein in an open conformation. Functions as a peptidyl-prolyl cis-trans isomerase (433 aa)
DNA-binding ATP-dependent protease La; ATP-dependent serine protease that mediates the selective degradation of mutant and abnormal proteins as well as certain short-lived regulatory proteins. Required for cellular homeostasis and for survival from DNA damage and developmental changes induced by stress. Degrades polypeptides processively to yield small peptide fragments that are 5 to 10 amino acids long. Binds to DNA in a double-stranded, site-specific manner (799 aa)
Chaperonin GroEL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions (553 aa)
Co-chaperonin GroES; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter (96 aa)
Heat shock protein GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP- [...] (196 aa)
ATP-dependent protease peptidase subunit; Protease subunit of a proteasome-like degradation complex believed to be a general protein degrading machinery (174 aa)
Excinuclease ABC subunit A; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate (944 aa)
Excinuclease ABC subunit B; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one UvrB monomer. DNA wrap is dependent on ATP binding by UvrB and probably causes local melting of the DNA helix, facilitating insertion of UvrB beta-hairpin between the DNA strands. Then UvrB probes one DNA strand for the presence of a lesion. If a lesion is found the UvrA subunits dissociate [...] (677 aa)
Your Current Organism:
Gallibacterium anatis
NCBI taxonomy Id: 1005058
Other names: G. anatis, G. anatis UMN179, Gallibacterium, Gallibacterium Christensen et al. 2003 emend. Bisgaard et al. 2009, Gallibacterium anatis, Gallibacterium anatis UMN179, Gallibacterium anatis str. UMN179, Gallibacterium anatis strain UMN179, Pasteurella anatis, Salpingitia sp. 10672/6, Salpingitia sp. 10672/9, Salpingitia sp. 12158, Salpingitia sp. 20558, Salpingitia sp. 36961/sv7, Salpingitia sp. BJ3453, Salpingitia sp. BK3387.2, Salpingitia sp. CCM 5995, Salpingitia sp. Gerl.220, Salpingitia sp. Gerl.3348/80, Salpingitia sp. Gerl.4224, Salpingitia sp. IPDH 697/78, avian Pasteurella haemolytica complex
Server load: low (27%) [HD]