STRINGSTRING
UMN179_02095 protein (Gallibacterium anatis) - STRING interaction network
"UMN179_02095" - NADPH dehydrogenase NamA in Gallibacterium anatis
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
UMN179_02095NADPH dehydrogenase NamA (311 aa)    
Predicted Functional Partners:
UMN179_01473
Multifunctional fatty acid oxidation complex subunit alpha (715 aa)
 
 
  0.906
UMN179_00638
Nitroreductase A (239 aa)
       
  0.646
UMN179_00578
Dihydropteridine reductase (162 aa)
       
  0.604
UMN179_00179
Nitroreductase family protein (186 aa)
       
  0.604
UMN179_00525
acetyl-CoA synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. AcsA undergoes a two-step reaction. In the first half reaction, AcsA combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA (654 aa)
   
 
  0.584
UMN179_00520
acetyl-CoA synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. AcsA undergoes a two-step reaction. In the first half reaction, AcsA combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA (654 aa)
   
 
  0.584
UMN179_01472
3-ketoacyl-CoA thiolase (435 aa)
   
 
  0.566
UMN179_01968
Succinate-semialdehyde dehydrogenase (497 aa)
   
 
  0.553
UMN179_01656
Gamma-aminobutyraldehyde dehydrogenase (495 aa)
   
 
  0.553
UMN179_01458
Betaine aldehyde dehydrogenase (504 aa)
   
 
  0.553
Your Current Organism:
Gallibacterium anatis
NCBI taxonomy Id: 1005058
Other names: G. anatis, G. anatis UMN179, Gallibacterium, Gallibacterium Christensen et al. 2003 emend. Bisgaard et al. 2009, Gallibacterium anatis, Gallibacterium anatis UMN179, Gallibacterium anatis str. UMN179, Gallibacterium anatis strain UMN179, Pasteurella anatis, Salpingitia sp. 10672/6, Salpingitia sp. 10672/9, Salpingitia sp. 12158, Salpingitia sp. 20558, Salpingitia sp. 36961/sv7, Salpingitia sp. BJ3453, Salpingitia sp. BK3387.2, Salpingitia sp. CCM 5995, Salpingitia sp. Gerl.220, Salpingitia sp. Gerl.3348/80, Salpingitia sp. Gerl.4224, Salpingitia sp. IPDH 697/78, avian Pasteurella haemolytica complex
Server load: low (8%) [HD]