STRINGSTRING
nusA protein (Gallibacterium anatis) - STRING interaction network
"nusA" - Transcription elongation factor NusA in Gallibacterium anatis
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
nusATranscription elongation factor NusA; Participates in both transcription termination and antitermination (495 aa)    
Predicted Functional Partners:
infB
Translation initiation factor IF-2; One of the essential components for the initiation of protein synthesis. Protects formylmethionyl-tRNA from spontaneous hydrolysis and promotes its binding to the 30S ribosomal subunits. Also involved in the hydrolysis of GTP during the formation of the 70S ribosomal complex (851 aa)
 
 
  0.982
rimP
Hypothetical protein; Required for maturation of 30S ribosomal subunits (153 aa)
   
        0.955
rpoB
DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (1345 aa)
 
 
  0.943
UMN179_02422
Inosine 5’-monophosphate dehydrogenase (523 aa)
   
      0.919
rpoC
DNA-directed RNA polymerase subunit beta’; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (1408 aa)
 
 
  0.902
rpoD
RNA polymerase sigma factor RpoD; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the primary sigma factor during exponential growth (624 aa)
 
 
  0.868
rpoH
RNA polymerase factor sigma-32 (281 aa)
 
 
  0.852
rpoA
DNA-directed RNA polymerase subunit alpha; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (327 aa)
 
 
  0.847
truB
tRNA pseudouridine synthase B; Responsible for synthesis of pseudouridine from uracil- 55 in the psi GC loop of transfer RNAs (307 aa)
 
   
  0.809
dinB
DNA polymerase IV; Poorly processive, error-prone DNA polymerase involved in untargeted mutagenesis. Copies undamaged DNA at stalled replication forks, which arise in vivo from mismatched or misaligned primer ends. These misaligned primers can be extended by PolIV. Exhibits no 3’-5’ exonuclease (proofreading) activity. May be involved in translesional synthesis, in conjunction with the beta clamp from PolIII (354 aa)
       
 
  0.771
Your Current Organism:
Gallibacterium anatis
NCBI taxonomy Id: 1005058
Other names: G. anatis, G. anatis UMN179, Gallibacterium, Gallibacterium Christensen et al. 2003 emend. Bisgaard et al. 2009, Gallibacterium anatis, Gallibacterium anatis UMN179, Gallibacterium anatis str. UMN179, Gallibacterium anatis strain UMN179, Pasteurella anatis, Salpingitia sp. 10672/6, Salpingitia sp. 10672/9, Salpingitia sp. 12158, Salpingitia sp. 20558, Salpingitia sp. 36961/sv7, Salpingitia sp. BJ3453, Salpingitia sp. BK3387.2, Salpingitia sp. CCM 5995, Salpingitia sp. Gerl.220, Salpingitia sp. Gerl.3348/80, Salpingitia sp. Gerl.4224, Salpingitia sp. IPDH 697/78, avian Pasteurella haemolytica complex
Server load: low (7%) [HD]