STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
Hsd17b617-beta-hydroxysteroid dehydrogenase type 6; NAD-dependent oxidoreductase with broad substrate specificity that shows both oxidative and reductive activity (in vitro). Has 17- beta-hydroxysteroid dehydrogenase activity towards various steroids (in vitro). Converts 5-alpha-androstan-3-alpha,17-beta-diol to androsterone and estradiol to estrone (in vitro). Has 3-alpha-hydroxysteroid dehydrogenase activity towards androsterone (in vitro). Has retinol dehydrogenase activity towards all-trans-retinol (in vitro). (317 aa)    
Predicted Functional Partners:
Srd5a1
3-oxo-5-alpha-steroid 4-dehydrogenase 1; Converts testosterone into 5-alpha-dihydrotestosterone and progesterone or corticosterone into their corresponding 5-alpha-3- oxosteroids. It plays a central role in sexual differentiation and androgen physiology (By similarity).
   
 
 0.966
Cyp17a1
Steroid 17-alpha-hydroxylase/17,20 lyase; A cytochrome P450 monooxygenase involved in corticoid and androgen biosynthesis. Catalyzes 17-alpha hydroxylation of C21 steroids, which is common for both pathways. A second oxidative step, required only for androgen synthesis, involves an acyl-carbon cleavage. The 17-alpha hydroxy intermediates, as part of adrenal glucocorticoids biosynthesis pathway, are precursors of cortisol. Hydroxylates steroid hormones, pregnenolone and progesterone to form 17-alpha hydroxy metabolites, followed by the cleavage of the C17-C20 bond to form C19 steroids, [...]
   
 
 0.963
Srd5a2
3-oxo-5-alpha-steroid 4-dehydrogenase 2; Converts testosterone (T) into 5-alpha-dihydrotestosterone (DHT) and progesterone or corticosterone into their corresponding 5- alpha-3-oxosteroids. It plays a central role in sexual differentiation and androgen physiology.
   
 
 0.956
Hsd3b1
3 beta-hydroxysteroid dehydrogenase/Delta 5-->4-isomerase type 1; A bifunctional enzyme responsible for the oxidation and isomerization of 3beta-hydroxy-Delta(5)-steroid precursors to 3-oxo- Delta(4)-steroids, an essential step in steroid hormone biosynthesis. Specifically catalyzes the conversion of pregnenolone to progesterone, 17alpha-hydroxypregnenolone to 17alpha-hydroxyprogesterone, dehydroepiandrosterone (DHEA) to 4-androstenedione, and androstenediol to testosterone. Additionally, catalyzes the interconversion between 3beta-hydroxy and 3-oxo-5alpha-androstane steroids controlli [...]
   
 
 0.949
Hsd3b2
3 beta-hydroxysteroid dehydrogenase/Delta 5-->4-isomerase type 2; 3-beta-HSD is a bifunctional enzyme, that catalyzes the oxidative conversion of Delta(5)-ene-3-beta-hydroxy steroid, and the oxidative conversion of ketosteroids. The 3-beta-HSD enzymatic system plays a crucial role in the biosynthesis of all classes of hormonal steroids.
   
 
 0.947
Srd5a3
Polyprenol reductase; Plays a key role in early steps of protein N-linked glycosylation by being required for the conversion of polyprenol into dolichol. Dolichols are required for the synthesis of dolichol-linked monosaccharides and the oligosaccharide precursor used for N- glycosylation. Acts as a polyprenol reductase that promotes the reduction of the alpha-isoprene unit of polyprenols into dolichols in a NADP-dependent mechanism. Also able to convert testosterone (T) into 5- alpha-dihydrotestosterone (DHT).
     
 0.944
H2-Ke6
Estradiol 17-beta-dehydrogenase 8; NAD-dependent 17-beta-hydroxysteroid dehydrogenase with highest activity towards estradiol. Has very low activity towards testosterone. The heterotetramer with CBR4 has NADH- dependent 3-ketoacyl-acyl carrier protein reductase activity, and thereby plays a role in mitochondrial fatty acid biosynthesis. Within the heterotetramer, HSD17B8 binds NADH; CBR4 binds NADPD.
  
 
 0.943
Hsd17b7
3-keto-steroid reductase; Responsible for the reduction of the keto group on the C-3 of sterols; Belongs to the short-chain dehydrogenases/reductases (SDR) family. ERG27 subfamily.
     
 0.938
Hsd17b1
Estradiol 17-beta-dehydrogenase 1; Favors the reduction of estrogens and androgens. Uses preferentially NADH; Belongs to the short-chain dehydrogenases/reductases (SDR) family.
  
 
0.937
Hsd3b5
NADPH-dependent 3-keto-steroid reductase Hsd3b5; Responsible for the reduction of the oxo group on the C-3 of 5alpha-androstane steroids. Catalyzes the conversion of dihydrotestosterone to its inactive form 5alpha-androstanediol, that does not bind androgen receptor/AR. Does not function as an isomerase.
   
 
 0.935
Your Current Organism:
Mus musculus
NCBI taxonomy Id: 10090
Other names: LK3 transgenic mice, M. musculus, Mus sp. 129SV, house mouse, mouse, nude mice, transgenic mice
Server load: medium (74%) [HD]