STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
Stoml3Stomatin-like protein 3; Required for the function of many mechanoreceptors. Modulate mechanotransduction channels and acid-sensing ion channels (ASIC) proteins. Potentiates PIEZO1 and PIEZO2 function by increasing their sensitivity to mechanical stimulations. (287 aa)    
Predicted Functional Partners:
Asic3
Acid-sensing ion channel 3; Cation channel with high affinity for sodium, which is gated by extracellular protons and inhibited by the diuretic amiloride. Generates a biphasic current with a fast inactivating and a slow sustained phase. In sensory neurons is proposed to mediate the pain induced by acidosis that occurs in ischemic, damaged or inflamed tissue. May be involved in hyperalgesia. May play a role in mechanoreception. Heteromeric channel assembly seems to modulate channel properties; Belongs to the amiloride-sensitive sodium channel (TC 1.A.6) family. ASIC3 subfamily.
    
 0.824
Asic1
Acid-sensing ion channel 1; Proton-gated sodium channel; it is activated by a drop of the extracellular pH and then becomes rapidly desensitized. Generates a biphasic current with a fast inactivating and a slow sustained phase. Has high selectivity for sodium ions and can also transport lithium ions with high efficiency. Can also transport potassium ions, but with lower efficiency. It is nearly impermeable to the larger rubidium and cesium ions. Mediates glutamate-independent Ca(2+) entry into neurons upon acidosis. This Ca(2+) overloading is toxic for cortical neurons and may be in pa [...]
    
 0.752
Piezo2
Piezo-type mechanosensitive ion channel component 2; Component of a mechanosensitive channel required for rapidly adapting mechanically activated (MA) currents. Required for Merkel-cell mechanotransduction. Plays a major role in light-touch mechanosensation ; Belongs to the PIEZO (TC 1.A.75) family.
   
  
 0.732
Piezo1
Piezo-type mechanosensitive ion channel component 1; Pore-forming subunit of a mechanosensitive non-specific cation channel. Generates currents characterized by a linear current- voltage relationship that are sensitive to ruthenium red and gadolinium. Plays a key role in epithelial cell adhesion by maintaining integrin activation through R-Ras recruitment to the ER, most probably in its activated state, and subsequent stimulation of calpain signaling. In the kidney, may contribute to the detection of intraluminal pressure changes and to urine flow sensing. Acts as shear- stress sensor [...]
   
  
 0.706
Asic5
Acid-sensing ion channel 5; Cation channel that gives rise to very low constitutive currents in the absence of activation. The activated channel exhibits selectivity for sodium and lithium, and is inhibited by amiloride (By similarity); Belongs to the amiloride-sensitive sodium channel (TC 1.A.6) family. ASIC5 subfamily.
   
 0.623
Kcnq4
Potassium voltage-gated channel subfamily KQT member 4; Probably important in the regulation of neuronal excitability. May underlie a potassium current involved in regulating the excitability of sensory cells of the cochlea; Belongs to the potassium channel family. KQT (TC 1.A.1.15) subfamily. Kv7.4/KCNQ4 sub-subfamily.
      
 0.622
Asic2
Acid-sensing ion channel 2; Cation channel with high affinity for sodium, which is gated by extracellular protons and inhibited by the diuretic amiloride. Also permeable for Li(+) and K(+). Generates a biphasic current with a fast inactivating and a slow sustained phase. Heteromeric channel assembly seems to modulate.
    
 0.594
Scly
Selenocysteine lyase; Catalyzes the decomposition of L-selenocysteine to L-alanine and elemental selenium; Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family.
   
 
 0.535
Cnga2
Cyclic nucleotide-gated olfactory channel; Odorant signal transduction is probably mediated by a G- protein coupled cascade using cAMP as second messenger. The olfactory channel can be shown to be activated by cyclic nucleotides which leads to a depolarization of olfactory sensory neurons; Belongs to the cyclic nucleotide-gated cation channel (TC 1.A.1.5) family. CNGA2 subfamily.
   
  
 0.533
Adcy3
Adenylate cyclase type 3; Catalyzes the formation of the signaling molecule cAMP in response to G-protein signaling. Participates in signaling cascades triggered by odorant receptors via its function in cAMP biosynthesis. Required for the perception of odorants. Required for normal sperm motility and normal male fertility. Plays a role in regulating insulin levels and body fat accumulation in response to a high fat diet.
   
 
 0.532
Your Current Organism:
Mus musculus
NCBI taxonomy Id: 10090
Other names: LK3 transgenic mice, M. musculus, Mus sp. 129SV, house mouse, mouse, nude mice, transgenic mice
Server load: high (86%) [HD]