STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
Dhx8ATP-dependent RNA helicase DHX8; Involved in pre-mRNA splicing as component of the spliceosome. Facilitates nuclear export of spliced mRNA by releasing the RNA from the spliceosome. (1244 aa)    
Predicted Functional Partners:
Eif4e
Eukaryotic translation initiation factor 4E; Recognizes and binds the 7-methylguanosine-containing mRNA cap during an early step in the initiation of protein synthesis and facilitates ribosome binding by inducing the unwinding of the mRNAs secondary structures. May play an important role in spermatogenesis through translational regulation of stage-specific mRNAs during germ cell development (By similarity). Its translation stimulation activity is repressed by binding to the complex CYFIP1-FMR1. Component of the CYFIP1-EIF4E-FMR1 complex which binds to the mRNA cap and mediates translat [...]
   
 
 0.994
Eif4a1
Eukaryotic initiation factor 4A-I; ATP-dependent RNA helicase which is a subunit of the eIF4F complex involved in cap recognition and is required for mRNA binding to ribosome. In the current model of translation initiation, eIF4A unwinds RNA secondary structures in the 5'-UTR of mRNAs which is necessary to allow efficient binding of the small ribosomal subunit, and subsequent scanning for the initiator codon; Belongs to the DEAD box helicase family. eIF4A subfamily.
   
 
 0.982
Crnkl1
Crooked neck-like protein 1; Involved in pre-mRNA splicing process.
   
 0.977
Slu7
Pre-mRNA-splicing factor SLU7; Required for pre-mRNA splicing as component of the spliceosome. Participates in the second catalytic step of pre-mRNA splicing, when the free hydroxyl group of exon I attacks the 3'-splice site to generate spliced mRNA and the excised lariat intron. Required for holding exon 1 properly in the spliceosome and for correct AG identification when more than one possible AG exists in 3'-splicing site region. May be involved in the activation of proximal AG. Probably also involved in alternative splicing regulation. Belongs to the SLU7 family.
   
 0.977
Aqr
RNA helicase aquarius; Involved in pre-mRNA splicing as component of the spliceosome. Intron-binding spliceosomal protein required to link pre- mRNA splicing and snoRNP (small nucleolar ribonucleoprotein) biogenesis. Plays a key role in position-dependent assembly of intron- encoded box C/D small snoRNP, splicing being required for snoRNP assembly. May act by helping the folding of the snoRNA sequence. Binds to intron of pre-mRNAs in a sequence-independent manner, contacting the region between snoRNA and the branchpoint of introns (40 nucleotides upstream of the branchpoint) during the [...]
   
 0.976
Prpf3
U4/U6 small nuclear ribonucleoprotein Prp3; Plays role in pre-mRNA splicing as component of the U4/U6-U5 tri-snRNP complex that is involved in spliceosome assembly, and as component of the precatalytic spliceosome (spliceosome B complex).
   
 
 0.973
Cdc40
Pre-mRNA-processing factor 17; Required for pre-mRNA splicing as component of the activated spliceosome.
   
 0.972
Xab2
Pre-mRNA-splicing factor SYF1; Involved in pre-mRNA splicing as component of the spliceosome. Involved in transcription-coupled repair (TCR), transcription and pre-mRNA splicing; Belongs to the crooked-neck family.
   
 0.963
Snw1
SNW domain-containing protein 1; Involved in pre-mRNA splicing as component of the spliceosome. Is required in the specific splicing of CDKN1A pre-mRNA; the function probably involves the recruitment of U2AF2 to the mRNA. Is proposed to recruit PPIL1 to the spliceosome. May be involved in cyclin-D1/CCND1 mRNA stability through the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. Involved in transcriptional regulation. Modulates TGF-beta-mediated transcription via association with SMAD proteins, MYOD1-mediated transcription via association with PABPN1, [...]
   
 0.963
Prpf8
Pre-mRNA-processing-splicing factor 8; Plays role in pre-mRNA splicing as core component of precatalytic, catalytic and postcatalytic spliceosomal complexes, both of the predominant U2-type spliceosome and the minor U12-type spliceosome. Functions as a scaffold that mediates the ordered assembly of spliceosomal proteins and snRNAs. Required for the assembly of the U4/U6-U5 tri-snRNP complex, a building block of the spliceosome. Functions as scaffold that positions spliceosomal U2, U5 and U6 snRNAs at splice sites on pre-mRNA substrates, so that splicing can occur. Interacts with both t [...]
   
 0.959
Your Current Organism:
Mus musculus
NCBI taxonomy Id: 10090
Other names: LK3 transgenic mice, M. musculus, Mus sp. 129SV, house mouse, mouse, nude mice, transgenic mice
Server load: low (32%) [HD]