STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
Pkd2l1Polycystic kidney disease 2-like 1 protein; Pore-forming subunit of a heteromeric, non-selective cation channel that is permeable to Ca(2+). Pore-forming subunit of a calcium-permeant ion channel formed by PKD1L2 and PKD1L1 in primary cilia, where it controls cilium calcium concentration, but does not affect cytoplasmic calcium concentration. The channel formed by PKD1L2 and PKD1L1 in primary cilia regulates sonic hedgehog/SHH signaling and GLI2 transcription. Pore-forming subunit of a channel formed by PKD1L2 and PKD1L3 that contributes to sour taste perception in gustatory cells. The [...] (760 aa)    
Predicted Functional Partners:
Pkd1l3
Polycystic kidney disease protein 1-like 3; Component of a calcium channel. May act as a sour taste receptor by forming a calcium channel with PKD1L3 in gustatory cells; however, its contribution to sour taste perception is unclear in vivo and may be indirect. Belongs to the polycystin family.
    
0.999
Pkd1l1
Polycystic kidney disease protein 1-like 1; Component of a ciliary calcium channel that controls calcium concentration within primary cilia without affecting cytoplasmic calcium concentration. Forms a heterodimer with PKD2L1 in primary cilia and forms a calcium-permeant ciliary channel that regulates sonic hedgehog/SHH signaling and GLI2 transcription. Does not constitute the pore-forming subunit. Also involved in left/right axis specification downstream of nodal flow: forms a complex with PKD2 in cilia to facilitate flow detection in left/right patterning.
      
0.984
Plcb2
1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-2; The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes. This protein may be involved in the transduction of bitter taste stimuli (By similarity).
   
  
 0.820
Trpm5
Transient receptor potential cation channel subfamily M member 5; Voltage-modulated Ca(2+)-activated, monovalent cation channel (VCAM) that mediates a transient membrane depolarization and plays a central role in taste transduction. Monovalent-specific, non-selective cation channel that mediates the transport of Na(+), K(+) and Cs(+) ions equally well. Activated directly by increases in intracellular Ca(2+), but is impermeable to it. Gating is voltage-dependent and displays rapid activation and deactivation kinetics upon channel stimulation even during sustained elevations in Ca(2+). A [...]
   
  
 0.810
Tas1r1
Taste receptor type 1 member 1; Putative taste receptor. TAS1R1/TAS1R3 responds to the umami taste stimulus (the taste of monosodium glutamate) and also to most of the 20 standard L-amino acids, but not to their D-enantiomers or other compounds. Sequence differences within and between species can significantly influence the selectivity and specificity of taste responses.
      
 0.731
Pkd1
Polycystin-1; Component of a heteromeric calcium-permeable ion channel formed by PKD1 and PKD2 that is activated by interaction between PKD1 and a Wnt family member, such as WNT3A and WNT9B. Both PKD1 and PKD2 are required for channel activity (By similarity). Involved in renal tubulogenesis. Involved in fluid-flow mechanosensation by the primary cilium in renal epithelium. Acts as a regulator of cilium length, together with PKD2. The dynamic control of cilium length is essential in the regulation of mechanotransductive signaling. The cilium length response creates a negative feedback [...]
    
 
0.727
Tas1r2
Taste receptor type 1 member 2; Putative taste receptor. TAS1R2/TAS1R3 recognizes diverse natural and synthetic sweeteners.
      
 0.719
Tas1r3
Taste receptor type 1 member 3; Putative taste receptor. TAS1R1/TAS1R3 responds to the umami taste stimulus (the taste of monosodium glutamate) and also to most of the 20 standard L-amino acids, but not to their D-enantiomers or other compounds. TAS1R2/TAS1R3 recognizes diverse natural and synthetic sweeteners. TAS1R3 is essential for the recognition and response to the disaccharide trehalose. Sequence differences within and between species can significantly influence the selectivity and specificity of taste responses.
      
 0.703
Gnat3
Guanine nucleotide-binding protein G(t) subunit alpha-3; Guanine nucleotide-binding protein (G protein) alpha subunit playing a prominent role in bitter and sweet taste transduction as well as in umami (monosodium glutamate, monopotassium glutamate, and inosine monophosphate) taste transduction. Transduction by this alpha subunit involves coupling of specific cell-surface receptors with a cGMP- phosphodiesterase; Activation of phosphodiesterase lowers intracellular levels of cAMP and cGMP which may open a cyclic nucleotide-suppressible cation channel leading to influx of calcium, ultim [...]
    
 
 0.675
Trpc1
Short transient receptor potential channel 1; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Seems to be also activated by intracellular calcium store depletion.
    
 
 0.671
Your Current Organism:
Mus musculus
NCBI taxonomy Id: 10090
Other names: LK3 transgenic mice, M. musculus, Mus sp. 129SV, house mouse, mouse, nude mice, transgenic mice
Server load: medium (46%) [HD]