STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
Rgs20Regulator of G-protein signaling 20; Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits thereby driving them into their inactive GDP-bound form. Binds selectively to G(z)-alpha and G(alpha)- i2 subunits, accelerates their GTPase activity and regulates their signaling activities. The G(z)-alpha activity is inhibited by the phosphorylation and palmitoylation of the G-protein. Negatively regulates mu-opioid receptor-mediated activation of the G-proteins. (372 aa)    
Predicted Functional Partners:
Gnb5
Guanine nucleotide-binding protein subunit beta-5; Enhances GTPase-activating protein (GAP) activity of regulator of G protein signaling (RGS) proteins, hence involved in the termination of the signaling initiated by the G protein coupled receptors (GPCRs) by accelerating the GTP hydrolysis on the G-alpha subunits, thereby promoting their inactivation (Probable). Increases RGS9 GTPase-activating protein (GAP) activity, hence contributes to the deactivation of G protein signaling initiated by D(2) dopamine receptors (By similarity). May play an important role in neuronal signaling, incl [...]
   
 0.806
Gnai2
Guanine nucleotide-binding protein G(i) subunit alpha-2; Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems. The G(i) proteins are involved in hormonal regulation of adenylate cyclase: they inhibit the cyclase in response to beta- adrenergic stimuli. May play a role in cell division.
   
 0.776
Gnaz
Guanine nucleotide-binding protein G(z) subunit alpha; Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems.
   
 0.772
Gnai3
Guanine nucleotide-binding protein G(i) subunit alpha; Heterotrimeric guanine nucleotide-binding proteins (G proteins) function as transducers downstream of G protein-coupled receptors (GPCRs) in numerous signaling cascades. The alpha chain contains the guanine nucleotide binding site and alternates between an active, GTP-bound state and an inactive, GDP-bound state. Signaling by an activated GPCR promotes GDP release and GTP binding. The alpha subunit has a low GTPase activity that converts bound GTP to GDP, thereby terminating the signal. Both GDP release and GTP hydrolysis are modul [...]
   
 0.749
Gnai1
Guanine nucleotide-binding protein G(i) subunit alpha-1; Guanine nucleotide-binding proteins (G proteins) function as transducers downstream of G protein-coupled receptors (GPCRs) in numerous signaling cascades. The alpha chain contains the guanine nucleotide binding site and alternates between an active, GTP-bound state and an inactive, GDP-bound state. Signaling by an activated GPCR promotes GDP release and GTP binding. The alpha subunit has a low GTPase activity that converts bound GTP to GDP, thereby terminating the signal. Both GDP release and GTP hydrolysis are modulated by numer [...]
   
 0.745
Gnb2
Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction.
   
 0.677
Rgs1
Regulator of G-protein signaling 1; Regulates G protein-coupled receptor signaling cascades, including signaling downstream of the N-formylpeptide chemoattractant receptors and leukotriene receptors. Inhibits B cell chemotaxis toward CXCL12. Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits thereby driving them into their inactive GDP-bound form (By similarity).
  
0.669
Gnb4
Guanine nucleotide-binding protein subunit beta-4; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction.
   
 0.660
Gnb1
Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction (By similarity).
   
 0.658
Gnat3
Guanine nucleotide-binding protein G(t) subunit alpha-3; Guanine nucleotide-binding protein (G protein) alpha subunit playing a prominent role in bitter and sweet taste transduction as well as in umami (monosodium glutamate, monopotassium glutamate, and inosine monophosphate) taste transduction. Transduction by this alpha subunit involves coupling of specific cell-surface receptors with a cGMP- phosphodiesterase; Activation of phosphodiesterase lowers intracellular levels of cAMP and cGMP which may open a cyclic nucleotide-suppressible cation channel leading to influx of calcium, ultim [...]
   
 0.656
Your Current Organism:
Mus musculus
NCBI taxonomy Id: 10090
Other names: LK3 transgenic mice, M. musculus, Mus sp. 129SV, house mouse, mouse, nude mice, transgenic mice
Server load: medium (42%) [HD]