STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
Scn2bSodium channel subunit beta-2; Crucial in the assembly, expression, and functional modulation of the heterotrimeric complex of the sodium channel. The subunit beta-2 causes an increase in the plasma membrane surface area and in its folding into microvilli. Interacts with TNR may play a crucial role in clustering and regulation of activity of sodium channels at nodes of Ranvier. (215 aa)    
Predicted Functional Partners:
Scn1b
Sodium channel subunit beta-1; Regulatory subunit of multiple voltage-gated sodium channel complexes that play important roles in excitable membranes in brain, heart and skeletal muscle. Enhances the presence of the pore-forming alpha subunit at the cell surface and modulates channel gating characteristics and the rate of channel inactivation. Modulates the activity of a variety of pore-forming alpha subunits, such as SCN1A, SCN2A, SCN3A, SCN4A, SCN5A and SCN10A. Belongs to the sodium channel auxiliary subunit SCN1B (TC 8.A.17) family.
  
 0.996
Scn3b
Sodium channel subunit beta-3; Modulates channel gating kinetics. Causes unique persistent sodium currents. Inactivates the sodium channel opening more slowly than the subunit beta-1. Its association with NFASC may target the sodium channels to the nodes of Ranvier of developing axons and retain these channels at the nodes in mature myelinated axons; Belongs to the sodium channel auxiliary subunit SCN3B (TC 8.A.17) family.
  
 
 0.987
Scn2a
Sodium channel protein type 2 subunit alpha; Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. Implicated in the regulation of hippocampal replay occurring within sharp wave ripples (SPW-R) important for memory (By similarity).
   
 0.979
Scn3a
Sodium channel protein type 3 subunit alpha; Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, forms a sodium- selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient (By similarity). May contribute to the regulation of serotonin/5-hydroxytryptamine release by enterochromaffin cells (By similarity). In pancreatic endocrine cells, required for both glucagon and glucose-induced insulin secretion (By similarity). Belo [...]
   
 0.977
Scn9a
Sodium channel protein type 9 subunit alpha; Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. It is a tetrodotoxin- sensitive Na(+) channel isoform. Plays a role in pain mechanisms, especially in the development of inflammatory pain.
   
 0.972
Scn1a
Sodium channel protein type 1 subunit alpha; Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. Plays a key role in brain, probably by regulating the moment when neurotransmitters are released in neurons. Involved in sensory perception of mechanical pain: activation in somatosensory neurons induces pain without neurogenic inflammatio [...]
   
 0.972
Scn5a
Sodium channel protein type 5 subunit alpha; This protein mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. It is a tetrodotoxin-resistant Na(+) channel isoform. This channel is responsible for the initial upstroke of the action potential. Channel inactivation is regulated by intracellular calcium levels.
   
 0.965
Scn8a
Sodium channel protein type 8 subunit alpha; Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient.
   
 0.951
Scn4a
Sodium channel protein type 4 subunit alpha; PPore-forming subunit of a voltage-gated sodium channel complex through which Na(+) ions pass in accordance with their electrochemical gradient. Alternates between resting, activated and inactivated states. Required for normal muscle fiber excitability, normal muscle contraction and relaxation cycles, and constant muscle strength in the presence of fluctuating K(+) levels (By similarity).
   
 0.947
Scn10a
Sodium channel protein type 10 subunit alpha; Tetrodotoxin-resistant channel that mediates the voltage- dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which sodium ions may pass in accordance with their electrochemical gradient. Plays a role in neuropathic pain mechanisms. Belongs to the sodium channel (TC 1.A.1.10) family. Nav1.8/SCN10A subfamily.
   
 0.931
Your Current Organism:
Rattus norvegicus
NCBI taxonomy Id: 10116
Other names: Buffalo rat, Norway rat, R. norvegicus, Rattus PC12 clone IS, Rattus sp. strain Wistar, Sprague-Dawley rat, Wistar rats, brown rat, laboratory rat, rat, rats, zitter rats
Server load: low (34%) [HD]