STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
Eif4hEukaryotic translation initiation factor 4H; Stimulates the RNA helicase activity of EIF4A in the translation initiation complex. Binds weakly mRNA (By similarity). (248 aa)    
Predicted Functional Partners:
Eif4a1
Eukaryotic translation initiation factor 4A1, isoform CRA_c; Belongs to the DEAD box helicase family.
   
 0.967
Eif4b
Eukaryotic translation initiation factor 4B.
   
 
0.956
Eif4e
Eukaryotic translation initiation factor 4E; Component of the CYFIP1-EIF4E-FMR1 complex which binds to the mRNA cap and mediates translational repression. In the CYFIP1-EIF4E- FMR1 complex this subunit mediates the binding to the mRNA cap (By similarity). Recognizes and binds the 7-methylguanosine-containing mRNA cap during an early step in the initiation of protein synthesis and facilitates ribosome binding by inducing the unwinding of the mRNAs secondary structures. May play an important role in spermatogenesis through translational regulation of stage-specific mRNAs during germ cell [...]
   
 0.929
Pabpc1
Polyadenylate-binding protein 1; Binds the poly(A) tail of mRNA, including that of its own transcript, and regulates processes of mRNA metabolism such as pre-mRNA splicing and mRNA stability. Its function in translational initiation regulation can either be enhanced by PAIP1 or repressed by PAIP2. Can probably bind to cytoplasmic RNA sequences other than poly(A) in vivo. Involved in translationally coupled mRNA turnover. Implicated with other RNA-binding proteins in the cytoplasmic deadenylation/translational and decay interplay of the FOS mRNA mediated by the major coding-region deter [...]
   
 0.913
Eif4a2
Eukaryotic initiation factor 4A-II; ATP-dependent RNA helicase which is a subunit of the eIF4F complex involved in cap recognition and is required for mRNA binding to ribosome. In the current model of translation initiation, eIF4A unwinds RNA secondary structures in the 5'-UTR of mRNAs which is necessary to allow efficient binding of the small ribosomal subunit, and subsequent scanning for the initiator codon (By similarity).
   
 0.910
Eif5
Eukaryotic translation initiation factor 5; Catalyzes the hydrolysis of GTP bound to the 40S ribosomal initiation complex (40S.mRNA.Met-tRNA[F].eIF-2.GTP) with the subsequent joining of a 60S ribosomal subunit resulting in the release of eIF-2 and the guanine nucleotide. The subsequent joining of a 60S ribosomal subunit results in the formation of a functional 80S initiation complex (80S.mRNA.Met-tRNA[F]); Belongs to the eIF-2-beta/eIF-5 family.
   
 0.891
Eif4g1
Eukaryotic translation initiation factor 4 gamma, 1.
   
 0.872
Eif2s1
Eukaryotic translation initiation factor 2 subunit 1; Functions in the early steps of protein synthesis by forming a ternary complex with GTP and initiator tRNA. This complex binds to a 40S ribosomal subunit, followed by mRNA binding to form a 43S pre- initiation complex. Junction of the 60S ribosomal subunit to form the 80S initiation complex is preceded by hydrolysis of the GTP bound to eIF-2 and release of an eIF-2-GDP binary complex. In order for eIF-2 to recycle and catalyze another round of initiation, the GDP bound to eIF- 2 must exchange with GTP by way of a reaction catalyzed [...]
   
 0.837
Eif2s3
Eukaryotic translation initiation factor 2 subunit 3, X-linked; As a subunit of eukaryotic initiation factor 2 (eIF2), involved in the early steps of protein synthesis. In the presence of GTP, eIF2 forms a ternary complex with initiator tRNA Met-tRNAi and then recruits the 40S ribosomal complex, a step that determines the rate of protein translation. This step is followed by mRNA binding to form the 43S pre-initiation complex. Junction of the 60S ribosomal subunit to form the 80S initiation complex is preceded by hydrolysis of the GTP bound to eIF2 and release of an eIF2-GDP binary com [...]
   
 0.825
Eif3c
Eukaryotic translation initiation factor 3 subunit C; Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis. The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF- 2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribos [...]
   
 
 0.801
Your Current Organism:
Rattus norvegicus
NCBI taxonomy Id: 10116
Other names: Buffalo rat, Norway rat, R. norvegicus, Rattus PC12 clone IS, Rattus sp. strain Wistar, Sprague-Dawley rat, Wistar rats, brown rat, laboratory rat, rat, rats, zitter rats
Server load: high (84%) [HD]