STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
Kcnk5Potassium two pore domain channel subfamily K member 5; Belongs to the two pore domain potassium channel (TC 1.A.1.8) family. (503 aa)    
Predicted Functional Partners:
Kcnn4
Intermediate conductance calcium-activated potassium channel protein 4; Forms a voltage-independent potassium channel that is activated by intracellular calcium. Activation is followed by membrane hyperpolarization which promotes calcium influx. Required for maximal calcium influx and proliferation during the reactivation of naive T- cells. The channel is blocked by clotrimazole and charybdotoxin but is insensitive to apamin; Belongs to the potassium channel KCNN family. KCa3.1/KCNN4 subfamily.
     
 0.941
Kcnq1
Potassium voltage-gated channel subfamily KQT member 1; Potassium channel that plays an important role in a number of tissues, including heart, inner ear, stomach and colon (By similarity). Associates with KCNE beta subunits that modulates current kinetics (By similarity). Induces a voltage-dependent by rapidly activating and slowly deactivating potassium-selective outward current (By similarity). Promotes also a delayed voltage activated potassium current showing outward rectification characteristic. During beta-adrenergic receptor stimulation participates in cardiac repolarization by [...]
   
 
 0.933
Kcnj13
Inward rectifier potassium channel 13; Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. KCNJ13 has a very low single channel conductance, low sensitivity to block by external barium and cesium, and no dependen [...]
     
 0.928
Kcne3
Potassium voltage-gated channel subfamily E member 3; Ancillary protein that assembles as a beta subunit with a voltage-gated potassium channel complex of pore-forming alpha subunits. Modulates the gating kinetics and enhances stability of the channel complex. Assembled with KCNB1 modulates the gating characteristics of the delayed rectifier voltage-dependent potassium channel KCNB1. Associated with KCNC4/Kv3.4 is proposed to form the subthreshold voltage-gated potassium channel in skeletal muscle and to establish the resting membrane potential (RMP) in muscle cells (By similarity). As [...]
   
 
 0.921
Kcnk9
Potassium channel subfamily K member 9; pH-dependent, voltage-insensitive, background potassium channel protein; Belongs to the two pore domain potassium channel (TC 1.A.1.8) family.
   
 
0.823
Kcnk3
Potassium channel subfamily K member 3; pH-dependent, voltage-insensitive, background potassium channel protein. Rectification direction results from potassium ion concentration on either side of the membrane. Acts as an outward rectifier when external potassium concentration is low. When external potassium concentration is high, current is inward.
   
 
0.818
Kcnk18
Potassium channel subfamily K member 18; Outward rectifying potassium channel. Produces rapidly activating outward rectifier K(+) currents. May function as background potassium channel that sets the resting membrane potential. Channel activity is directly activated by calcium signal. Activated by the G(q)-protein coupled receptor pathway. The calcium signal robustly activates the channel via calcineurin, whereas the anchoring of 14-3- 3/YWHAH interferes with the return of the current to the resting state after activation. Inhibited also by arachidonic acid and other naturally occurring [...]
   
 
0.686
Kcnk13
Potassium channel subfamily K member 13; Potassium channel displaying weak inward rectification in symmetrical K(+) solution.
   
 
0.680
Kcnk12
Potassium channel subfamily K member 12; Probable potassium channel subunit. No channel activity observed in heterologous systems. May need to associate with another protein to form a functional channel; Belongs to the two pore domain potassium channel (TC 1.A.1.8) family.
   
 
0.674
Kcnk15
Potassium channel subfamily K member 15; Probable potassium channel subunit. No channel activity observed in heterologous systems. May need to associate with another protein to form a functional channel.
   
 
0.664
Your Current Organism:
Rattus norvegicus
NCBI taxonomy Id: 10116
Other names: Buffalo rat, Norway rat, R. norvegicus, Rattus PC12 clone IS, Rattus sp. strain Wistar, Sprague-Dawley rat, Wistar rats, brown rat, laboratory rat, rat, rats, zitter rats
Server load: low (30%) [HD]