STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
PIIN_06700Related to potassium transporter TRK-1. (219 aa)    
Predicted Functional Partners:
PIIN_06331
V-type proton ATPase subunit a; Essential component of the vacuolar proton pump (V-ATPase), a multimeric enzyme that catalyzes the translocation of protons across the membranes. Required for assembly and activity of the V-ATPase.
    
 0.737
PIIN_03802
Probable vacuolar ATP synthase subunit D.
    
 0.735
PIIN_06314
Probable TFP1p-H+-ATPase V1 domain 69 KD catalytic subunit, vacuolar.
    
 0.735
PIIN_05421
Vacuolar proton pump subunit B; Non-catalytic subunit of the peripheral V1 complex of vacuolar ATPase; Belongs to the ATPase alpha/beta chains family.
    
  0.728
PIIN_04821
V-type proton ATPase subunit; Vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells. The active enzyme consists of a catalytic V1 domain attached to an integral membrane V0 proton pore complex. This subunit is a non-integral membrane component of the membrane pore domain and is required for proper assembly of the V0 sector. Might be involved in the regulated assembly of V1 subunits onto the membrane sector or alternatively may prevent the passage of protons through V0 pores; Belongs to the V-ATPase V0D/AC39 subunit family.
  
 
  0.723
PIIN_00663
V-type proton ATPase subunit F; Subunit of the peripheral V1 complex of vacuolar ATPase essential for assembly or catalytic function. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells.
    
  0.722
PIIN_07023
Probable Vacuolar ATP synthase subunit E.
    
  0.589
PIIN_01466
Probable vacuolar ATP synthase 22 kDa proteolipid subunit; Belongs to the V-ATPase proteolipid subunit family.
    
 0.568
PIIN_07476
V-type proton ATPase proteolipid subunit; Proton-conducting pore forming subunit of the membrane integral V0 complex of vacuolar ATPase. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells.
    
 0.568
PIIN_08727
V-type proton ATPase proteolipid subunit; Proton-conducting pore forming subunit of the membrane integral V0 complex of vacuolar ATPase. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells.
    
 0.568
Your Current Organism:
Serendipita indica
NCBI taxonomy Id: 1109443
Other names: Piriformospora indica DSM 11827, S. indica DSM 11827, Serendipita indica DSM 11827
Server load: low (24%) [HD]