STRINGSTRING
rps5 protein (Synechococcus elongatus PCC7942) - STRING interaction network
"rps5" - 30S ribosomal protein S5 in Synechococcus elongatus PCC7942
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
rps530S ribosomal protein S5; With S4 and S12 plays an important role in translational accuracy; Belongs to the universal ribosomal protein uS5 family (180 aa)    
Predicted Functional Partners:
rpl6
50S ribosomal protein L6; This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center (179 aa)
 
  0.999
rpsK
30S ribosomal protein S11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine-Dalgarno cleft in the 70S ribosome (130 aa)
 
  0.999
rpsM
30S ribosomal protein S13; Located at the top of the head of the 30S subunit, it contacts several helices of the 16S rRNA. In the 70S ribosome it contacts the 23S rRNA (bridge B1a) and protein L5 of the 50S subunit (bridge B1b), connecting the 2 subunits; these bridges are implicated in subunit movement. Contacts the tRNAs in the A and P- sites (125 aa)
 
  0.999
rpl5
50S ribosomal protein L5; This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs (179 aa)
 
 
  0.999
rplN
50S ribosomal protein L14; Binds to 23S rRNA. Forms part of two intersubunit bridges in the 70S ribosome (121 aa)
 
 
  0.999
rps8
30S ribosomal protein S8; One of the primary rRNA binding proteins, it binds directly to 16S rRNA central domain where it helps coordinate assembly of the platform of the 30S subunit (133 aa)
 
  0.999
rps3
30S ribosomal protein S3; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation (244 aa)
 
 
  0.999
rpsS
30S ribosomal protein S19; Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA (91 aa)
 
 
  0.999
rplR
50S ribosomal protein L18; This is one of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance (120 aa)
 
 
  0.999
rplP
50S ribosomal protein L16; Binds 23S rRNA and is also seen to make contacts with the A and possibly P site tRNAs (142 aa)
 
 
  0.999
Your Current Organism:
Synechococcus elongatus PCC7942
NCBI taxonomy Id: 1140
Other names: Anacystis nidulans R2, S. elongatus PCC 7942, Synechococcus elongatus PCC 7942, Synechococcus elongatus PCC7942, Synechococcus leopoliensis UTEX 2434, Synechococcus leopoliensis strain PCC 7942, Synechococcus sp. IAM M-200, Synechococcus sp. PCC 7942
Server load: low (10%) [HD]