STRINGSTRING
psbF protein (Synechocystis sp. PCC6803) - STRING interaction network
"psbF" - Cytochrome b559 b subunit in Synechocystis sp. PCC6803
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
psbFCytochrome b559 b subunit; This b-type cytochrome is tightly associated with the reaction center of photosystem II (PSII). PSII is a light-driven water-plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation (44 aa)    
Predicted Functional Partners:
psbE
Cytochrome b559 a subunit; This b-type cytochrome is tightly associated with the reaction center of photosystem II (PSII). PSII is a light-driven water-plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation (81 aa)
 
  0.999
psbB
Photosystem II CP47 protein; One of the components of the core complex of photosystem II (PSII). It binds chlorophyll and helps catalyze the primary light-induced photochemical processes of PSII. PSII is a light- driven water-plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation (507 aa)
   
  0.999
psbJ
Photosystem II PsbJ protein; One of the components of the core complex of photosystem II (PSII), possibly involved in regulating electron flow (PubMed-11546758, PubMed-8420932). PSII is a light-driven water-plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation (39 aa)
 
 
  0.999
psbC
Photosystem II CP43 protein; One of the components of the core complex of photosystem II (PSII). It binds chlorophyll and helps catalyze the primary light-induced photochemical processes of PSII. PSII is a light- driven water-plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation (By similarity). Required for correct assembly of PSII (PubMed-1903653, PubMed-23148271) (460 aa)
   
  0.999
psbH
Photosystem II PsbH protein; One of the components of the core complex of photosystem II (PSII), required for its stability and/or assembly. May regulate electron transport between the quinone binding sites of the reaction center (PubMed-7626631, Ref.6). PSII is a light- driven water-plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation (64 aa)
   
  0.998
psbD
Photosystem II D2 protein; Photosystem II (PSII) is a light-driven water- plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. D2 is needed for assembly of a stable PSII complex (352 aa)
   
  0.997
psbO
Photosystem II manganese-stabilizing polypeptide; MSP binds to a putative Mn-binding protein and keeps 2 of the 4 Mn-atoms associated with PSII (274 aa)
     
  0.996
psbK
Photosystem II PsbK protein; One of the components of the core complex of photosystem II (PSII). PSII is a light-driven water-plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation (45 aa)
   
 
  0.995
psbL
Photosystem II PsbL protein; One of the components of the core complex of photosystem II (PSII). PSII is a light-driven water-plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. This subunit is found at the monomer-monomer interface and is required for correct PSII assembly and/or dimerization (By similarity). Required for PSII a [...] (39 aa)
       
  0.995
psbI
Photosystem II PsbI protein; One of the components of the core complex of photosystem II (PSII) (PubMed-8544827). Not essential for assembly, it probably binds to D1 early in the assembly of PSII and stabilizes binding of CP43 (psbC) to the reaction center (PubMed-17921338). PSII is a light-driven water-plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation [...] (38 aa)
   
   
  0.995
Your Current Organism:
Synechocystis sp. PCC6803
NCBI taxonomy Id: 1148
Other names: Aphanocapsa sp. (strain N-1), Aphanocapsa sp. N-1, S. sp. PCC 6803, Synechocystis, Synechocystis PCC6803, Synechocystis sp. (ATCC 27184), Synechocystis sp. (PCC 6803), Synechocystis sp. (strain PCC 6803), Synechocystis sp. ATCC 27184, Synechocystis sp. PCC 6803, Synechocystis sp. PCC 6803 A, Synechocystis sp. PCC 6803 B, Synechocystis sp. PCC6803
Server load: low (4%) [HD]