STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
sll1758Phosphoglucosamine mutase; Catalyzes the conversion of glucosamine-6-phosphate to glucosamine-1-phosphate; Belongs to the phosphohexose mutase family. (481 aa)    
Predicted Functional Partners:
glmU
UDP-N-acetylglucosamine pyrophosphorylase; Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-N-acetylglucosamine (UDP-GlcNAc). The C- terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate (GlcN-1-P) to produce N- acetylglucosamine-1-phosphate (GlcNAc-1-P), which is converted into UDP-GlcNAc by the transfer of uridine 5-monophosphate (from uridine 5- triphosphate), a reaction catalyzed by the N-terminal domain. In the C-terminal section; belongs to the transferase hexapeptide repeat family.
 
 0.993
glmS
L-glutamine:D-fructose-6-P amidotransferase; Catalyzes the first step in hexosamine metabolism, converting fructose-6P into glucosamine-6P using glutamine as a nitrogen source.
 
 0.959
folP
Dihydropteroate pyrophosphorylase; Catalyzes the condensation of para-aminobenzoate (pABA) with 6-hydroxymethyl-7,8-dihydropterin diphosphate (DHPt-PP) to form 7,8- dihydropteroate (H2Pte), the immediate precursor of folate derivatives. Belongs to the DHPS family.
 
  
 0.954
slr0104
ORF_ID:slr0104; hypothetical protein.
      
 0.789
recA
RecA gene product; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family.
    
 0.689
sll0505
Diadenylate cyclase; Catalyzes the condensation of 2 ATP molecules into cyclic di- AMP (c-di-AMP), a second messenger used to regulate differing processes in different bacteria.
   
 
 0.668
murC
UDP-N-acetylmuramate-alanine ligase; Cell wall formation; Belongs to the MurCDEF family.
  
 
 
 0.609
slr0820
Glucosyltransferase; ORF_ID:slr0820.
  
  
 0.589
lysA
Diaminopimelate decarboxylase; Specifically catalyzes the decarboxylation of meso- diaminopimelate (meso-DAP) to L-lysine.
  
  
 0.578
sll0506
Isoprenyl transferase; Catalyzes the condensation of isopentenyl diphosphate (IPP) with allylic pyrophosphates generating different type of terpenoids.
  
   
 0.543
Your Current Organism:
Synechocystis sp. PCC6803
NCBI taxonomy Id: 1148
Other names: Aphanocapsa sp. (strain N-1), Aphanocapsa sp. N-1, S. sp. PCC 6803, Synechocystis sp. (ATCC 27184), Synechocystis sp. (PCC 6803), Synechocystis sp. (strain PCC 6803), Synechocystis sp. ATCC 27184, Synechocystis sp. PCC 6803, Synechocystis sp. PCC 6803 A, Synechocystis sp. PCC 6803 B
Server load: medium (42%) [HD]