STRINGSTRING
tgt protein (Synechocystis sp. PCC6803) - STRING interaction network
"tgt" - Transfer RNA-guanine transglycosylase in Synechocystis sp. PCC6803
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
tgtTransfer RNA-guanine transglycosylase; Exchanges the guanine residue with 7-aminomethyl-7- deazaguanine in tRNAs with GU(N) anticodons (tRNA-Asp, -Asn, -His and -Tyr). After this exchange, a cyclopentendiol moiety is attached to the 7-aminomethyl group of 7-deazaguanine, resulting in the hypermodified nucleoside queuosine (Q) (7-(((4,5-cis- dihydroxy-2-cyclopenten-1-yl)amino)methyl)-7-deazaguanosine) (By similarity) (374 aa)    
Predicted Functional Partners:
queA
Queuosine biosynthesis protein QueA; Transfers and isomerizes the ribose moiety from AdoMet to the 7-aminomethyl group of 7-deazaguanine (preQ1-tRNA) to give epoxyqueuosine (oQ-tRNA) (366 aa)
 
  0.995
nnr
Hypothetical protein; Bifunctional enzyme that catalyzes the epimerization of the S- and R-forms of NAD(P)HX and the dehydration of the S-form of NAD(P)HX at the expense of ADP, which is converted to AMP. This allows the repair of both epimers of NAD(P)HX, a damaged form of NAD(P)H that is a result of enzymatic or heat-dependent hydration (By similarity) (524 aa)
         
  0.878
SYNGTS_2057
RNA polymerase sigma factor; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released (345 aa)
   
      0.874
truB
tRNA pseudouridine synthase B; Responsible for synthesis of pseudouridine from uracil- 55 in the psi GC loop of transfer RNAs (296 aa)
   
   
  0.866
trmD
tRNA (m1G37) methyltransferase; Specifically methylates guanosine-37 in various tRNAs (231 aa)
   
   
  0.847
queF
Hypothetical protein; Catalyzes the NADPH-dependent reduction of 7-cyano-7- deazaguanine (preQ0) to 7-aminomethyl-7-deazaguanine (preQ1) (137 aa)
       
  0.822
truA
tRNA pseudouridine synthase A; Formation of pseudouridine at positions 38, 39 and 40 in the anticodon stem and loop of transfer RNAs (275 aa)
   
   
  0.797
aat
Leu/Phe-tRNA-protein transferase; Functions in the N-end rule pathway of protein degradation where it conjugates Leu, Phe and, less efficiently, Met from aminoacyl-tRNAs to the N-termini of proteins containing an N-terminal arginine or lysine (198 aa)
           
  0.774
pnp
Polyribonucleotide nucleotidyltransferase; Involved in mRNA degradation. Catalyzes the phosphorolysis of single-stranded polyribonucleotides processively in the 3’- to 5’-direction (718 aa)
 
   
  0.753
SYNGTS_1584
polyA polymerase (942 aa)
   
   
  0.735
Your Current Organism:
Synechocystis sp. PCC6803
NCBI taxonomy Id: 1148
Other names: Aphanocapsa sp. (strain N-1), Aphanocapsa sp. N-1, S. sp. PCC 6803, Synechocystis, Synechocystis PCC6803, Synechocystis sp. (ATCC 27184), Synechocystis sp. (PCC 6803), Synechocystis sp. (strain PCC 6803), Synechocystis sp. ATCC 27184, Synechocystis sp. PCC 6803, Synechocystis sp. PCC 6803 A, Synechocystis sp. PCC 6803 B, Synechocystis sp. PCC6803
Server load: low (10%) [HD]