STRINGSTRING
tadA protein (Dermacoccus nishinomiyaensis) - STRING interaction network
"tadA" - tRNA-specific adenosine deaminase in Dermacoccus nishinomiyaensis
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
tadAtRNA-specific adenosine deaminase; Catalyzes the deamination of adenosine to inosine at the wobble position 34 of tRNA(Arg2); Belongs to the cytidine and deoxycytidylate deaminase family (159 aa)    
Predicted Functional Partners:
HX89_06340
Thymidine kinase; Derived by automated computational analysis using gene prediction method- Protein Homology (241 aa)
       
  0.923
HX89_10540
Pyrimidine-nucleoside phosphorylase; Derived by automated computational analysis using gene prediction method- Protein Homology (437 aa)
       
    0.901
polA
DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5’-3’ exonuclease activity (889 aa)
         
  0.832
ung
Uracil-DNA glycosylase; Excises uracil residues from the DNA which can arise as a result of misincorporation of dUMP residues by DNA polymerase or due to deamination of cytosine (224 aa)
       
  0.818
upp
Uracil phosphoribosyltransferase; Catalyzes the conversion of uracil and 5-phospho-alpha- D-ribose 1-diphosphate (PRPP) to UMP and diphosphate (216 aa)
         
  0.787
HX89_08275
Riboflavin biosynthesis protein RibD; Converts 2,5-diamino-6-(ribosylamino)-4(3h)-pyrimidinone 5’-phosphate into 5-amino-6-(ribosylamino)-2,4(1h,3h)- pyrimidinedione 5’-phosphate; In the C-terminal section; belongs to the HTP reductase family (340 aa)
   
   
  0.774
tilS
tRNA(Ile)-lysidine synthase; Ligates lysine onto the cytidine present at position 34 of the AUA codon-specific tRNA(Ile) that contains the anticodon CAU, in an ATP-dependent manner. Cytidine is converted to lysidine, thus changing the amino acid specificity of the tRNA from methionine to isoleucine; Belongs to the tRNA(Ile)-lysidine synthase family (353 aa)
 
   
  0.672
trmD
tRNA (guanine-N(1)-)-methyltransferase; Specifically methylates guanosine-37 in various tRNAs; Belongs to the RNA methyltransferase TrmD family (394 aa)
           
  0.517
ribA
Multifunctional fusion protein; Catalyzes the conversion of D-ribulose 5-phosphate to formate and 3,4-dihydroxy-2-butanone 4-phosphate; Belongs to the DHBP synthase family (411 aa)
   
   
  0.516
guaB
Inosine-5’-monophosphate dehydrogenase; Catalyzes the conversion of inosine 5’-phosphate (IMP) to xanthosine 5’-phosphate (XMP), the first committed and rate- limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth; Belongs to the IMPDH/GMPR family (508 aa)
   
   
  0.502
Your Current Organism:
Dermacoccus nishinomiyaensis
NCBI taxonomy Id: 1274
Other names: ATCC 29093, CCM 2140, CCUG 33028, CIP 81.71, D. nishinomiyaensis, DSM 20448, Dermacoccus nishinomiyaensis, Dermacoccus nishinomiyensis, Dermatococcus nishinomiyaensis, Dermatococcus nishinomiyensis, IEGM 393, IFO 15356, JCM 11613, LMG 14222, Micrococcus nishinomiyaensis, Micrococcus nishinomyaensis, NBRC 15356, NCTC 11039
Server load: low (3%) [HD]