STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
typAGTP-binding protein TypA; Derived by automated computational analysis using gene prediction method: Protein Homology. (637 aa)    
Predicted Functional Partners:
gltB
Glutamate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
  
 0.807
guaA
GMP synthase; Catalyzes the synthesis of GMP from XMP.
 
  
 0.777
der
GTP-binding protein EngA; GTPase that plays an essential role in the late steps of ribosome biogenesis; Belongs to the TRAFAC class TrmE-Era-EngA-EngB-Septin-like GTPase superfamily. EngA (Der) GTPase family.
  
  
 0.664
rplA
50S ribosomal protein L1; Binds directly to 23S rRNA. The L1 stalk is quite mobile in the ribosome, and is involved in E site tRNA release.
   
    0.656
AIF40099.1
RNA helicase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
  
 0.602
AIF40781.1
RNA helicase; Derived by automated computational analysis using gene prediction method: Protein Homology.
      
 0.598
ychF
GTP-binding protein; ATPase that binds to both the 70S ribosome and the 50S ribosomal subunit in a nucleotide-independent manner.
  
  
 0.576
rpoB
DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
  
  
 0.571
AIF40327.1
DNA helicase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the DEAD box helicase family.
 
  
 0.565
fusA
Elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 subfamily.
   
  
0.559
Your Current Organism:
Dermacoccus nishinomiyaensis
NCBI taxonomy Id: 1274
Other names: ATCC 29093, CCM 2140, CCUG 33028, CIP 81.71, D. nishinomiyaensis, DSM 20448, Dermacoccus nishinomiyensis, Dermatococcus nishinomiyaensis, Dermatococcus nishinomiyensis, IEGM 393, IFO 15356, JCM 11613, LMG 14222, LMG:14222, Micrococcus nishinomiyaensis, Micrococcus nishinomyaensis, NBRC 15356, NCTC 11039
Server load: low (18%) [HD]