STRINGSTRING
HX89_08370 protein (Dermacoccus nishinomiyaensis) - STRING interaction network
"HX89_08370" - Uncharacterized protein in Dermacoccus nishinomiyaensis
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
HX89_08370Uncharacterized protein; Derived by automated computational analysis using gene prediction method- Protein Homology (218 aa)    
Predicted Functional Partners:
HX89_01895
Adenylosuccinate lyase; Catalyzes two discrete reactions in the de novo synthesis of purines- the cleavage of adenylosuccinate and succinylaminoimidazole carboxamide ribotide; Derived by automated computational analysis using gene prediction method- Protein Homology (473 aa)
   
  0.928
atpG
ATP synthase gamma chain; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex (304 aa)
     
 
  0.927
atpF
ATP synthase subunit b; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family (201 aa)
     
 
  0.926
atpD
ATP synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits (486 aa)
   
 
  0.921
atpE
ATP synthase subunit c; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation (72 aa)
   
 
  0.918
atpH
ATP synthase subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation (270 aa)
   
 
  0.918
atpB
ATP synthase subunit a; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane (269 aa)
   
 
  0.916
HX89_05810
Vitamin B12-dependent ribonucleotide reductase; Catalyzes the reduction of ribonucleotides to deoxyribonucleotides. May function to provide a pool of deoxyribonucleotide precursors for DNA repair during oxygen limitation and/or for immediate growth after restoration of oxygen (975 aa)
     
 
  0.914
atpC
ATP synthase epsilon chain; Produces ATP from ADP in the presence of a proton gradient across the membrane (88 aa)
     
 
  0.912
rpmJ
50S ribosomal protein L36; Smallest protein in the large subunit; similar to what is found with protein L31 and L33 several bacterial genomes contain paralogs which may be regulated by zinc; the protein from Thermus thermophilus has a zinc-binding motif and contains a bound zinc ion; the proteins in this group have the motif; Derived by automated computational analysis using gene prediction method- Protein Homology (37 aa)
   
   
  0.804
Your Current Organism:
Dermacoccus nishinomiyaensis
NCBI taxonomy Id: 1274
Other names: ATCC 29093, CCM 2140, CCUG 33028, CIP 81.71, D. nishinomiyaensis, DSM 20448, Dermacoccus nishinomiyaensis, Dermacoccus nishinomiyensis, Dermatococcus nishinomiyaensis, Dermatococcus nishinomiyensis, IEGM 393, IFO 15356, JCM 11613, LMG 14222, Micrococcus nishinomiyaensis, Micrococcus nishinomyaensis, NBRC 15356, NCTC 11039
Server load: low (6%) [HD]