STRINGSTRING
HX89_11550 protein (Dermacoccus nishinomiyaensis) - STRING interaction network
"HX89_11550" - Pyridoxal 5'-phosphate synthase in Dermacoccus nishinomiyaensis
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
HX89_11550Pyridoxal 5’-phosphate synthase; Catalyzes the oxidation of either pyridoxine 5’- phosphate (PNP) or pyridoxamine 5’-phosphate (PMP) into pyridoxal 5’-phosphate (PLP) (225 aa)    
Predicted Functional Partners:
pdxT
Pyridoxal 5’-phosphate synthase subunit PdxT; Catalyzes the hydrolysis of glutamine to glutamate and ammonia as part of the biosynthesis of pyridoxal 5’-phosphate. The resulting ammonia molecule is channeled to the active site of PdxS (205 aa)
   
  0.925
pdxS
Pyridoxal 5’-phosphate synthase subunit PdxS; Catalyzes the formation of pyridoxal 5’-phosphate from ribose 5-phosphate (RBP), glyceraldehyde 3-phosphate (G3P) and ammonia. The ammonia is provided by the PdxT subunit. Can also use ribulose 5-phosphate and dihydroxyacetone phosphate as substrates, resulting from enzyme-catalyzed isomerization of RBP and G3P, respectively; Belongs to the PdxS/SNZ family (302 aa)
     
  0.924
HX89_01395
Pyridoxal kinase; Derived by automated computational analysis using gene prediction method- Protein Homology; Belongs to the pyridoxine kinase family (282 aa)
   
 
  0.918
HX89_03045
Oxidoreductase; Derived by automated computational analysis using gene prediction method- Protein Homology (287 aa)
         
  0.902
HX89_11555
Phosphoserine aminotransferase; Catalyzes the reversible conversion of 3- phosphohydroxypyruvate to phosphoserine and of 3-hydroxy-2-oxo-4- phosphonooxybutanoate to phosphohydroxythreonine (379 aa)
   
   
  0.722
HX89_08275
Riboflavin biosynthesis protein RibD; Converts 2,5-diamino-6-(ribosylamino)-4(3h)-pyrimidinone 5’-phosphate into 5-amino-6-(ribosylamino)-2,4(1h,3h)- pyrimidinedione 5’-phosphate; In the C-terminal section; belongs to the HTP reductase family (340 aa)
           
  0.626
HX89_12580
7,8-dihydroneopterin aldolase; Catalyzes the conversion of 7,8-dihydroneopterin to 6- hydroxymethyl-7,8-dihydropterin (323 aa)
           
  0.625
ribA
Multifunctional fusion protein; Catalyzes the conversion of D-ribulose 5-phosphate to formate and 3,4-dihydroxy-2-butanone 4-phosphate; Belongs to the DHBP synthase family (411 aa)
         
  0.617
HX89_11545
Beta-lactamase; Derived by automated computational analysis using gene prediction method- Protein Homology (533 aa)
   
        0.466
HX89_11560
Uncharacterized protein; Derived by automated computational analysis using gene prediction method- Protein Homology (857 aa)
              0.441
Your Current Organism:
Dermacoccus nishinomiyaensis
NCBI taxonomy Id: 1274
Other names: ATCC 29093, CCM 2140, CCUG 33028, CIP 81.71, D. nishinomiyaensis, DSM 20448, Dermacoccus nishinomiyaensis, Dermacoccus nishinomiyensis, Dermatococcus nishinomiyaensis, Dermatococcus nishinomiyensis, IEGM 393, IFO 15356, JCM 11613, LMG 14222, Micrococcus nishinomiyaensis, Micrococcus nishinomyaensis, NBRC 15356, NCTC 11039
Server load: low (7%) [HD]