STRINGSTRING
tsaD protein (Staphylococcus xylosus) - STRING interaction network
"tsaD" - tRNA N6-adenosine threonylcarbamoyltransferase in Staphylococcus xylosus
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
tsaDtRNA N6-adenosine threonylcarbamoyltransferase; Required for the formation of a threonylcarbamoyl group on adenosine at position 37 (t(6)A37) in tRNAs that read codons beginning with adenine. Is involved in the transfer of the threonylcarbamoyl moiety of threonylcarbamoyl-AMP (TC-AMP) to the N6 group of A37, together with TsaE and TsaB. TsaD likely plays a direct catalytic role in this reaction; Belongs to the KAE1 / TsaD family (340 aa)    
Predicted Functional Partners:
AID42286.1
annotation not available (153 aa)
 
  0.995
AID42287.1
annotation not available (220 aa)
 
 
  0.993
AID42288.1
Ribosomal-protein-alanine acetyltransferase; This enzyme acetylates the N-terminal alanine of ribosomal protein S18 (141 aa)
   
  0.989
secA
Protein translocase subunit SecA; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. Has a central role in coupling the hydrolysis of ATP to the transfer of proteins into and across the cell membrane, serving as an ATP-driven molecular motor driving the stepwise translocation of polypeptide chains across the membrane; Belongs to the SecA family (843 aa)
 
 
  0.837
ksgA
Ribosomal RNA small subunit methyltransferase A; Specifically dimethylates two adjacent adenosines (A1518 and A1519) in the loop of a conserved hairpin near the 3’-end of 16S rRNA in the 30S particle. May play a critical role in biogenesis of 30S subunits (296 aa)
 
   
  0.834
rpoB
DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (1183 aa)
 
 
  0.748
rpsH
30S ribosomal protein S8; One of the primary rRNA binding proteins, it binds directly to 16S rRNA central domain where it helps coordinate assembly of the platform of the 30S subunit (132 aa)
 
   
  0.743
rpsK
30S ribosomal protein S11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine-Dalgarno cleft in the 70S ribosome (129 aa)
 
   
  0.743
infB
Translation initiation factor IF-2; One of the essential components for the initiation of protein synthesis. Protects formylmethionyl-tRNA from spontaneous hydrolysis and promotes its binding to the 30S ribosomal subunits. Also involved in the hydrolysis of GTP during the formation of the 70S ribosomal complex (702 aa)
   
   
  0.735
rplC
50S ribosomal protein L3; One of the primary rRNA binding proteins, it binds directly near the 3’-end of the 23S rRNA, where it nucleates assembly of the 50S subunit (219 aa)
 
   
  0.732
Your Current Organism:
Staphylococcus xylosus
NCBI taxonomy Id: 1288
Other names: ATCC 29971, CCUG 7324, CIP 81.66, DSM 20266, HAMBI 2057, JCM 2418, NCTC 11043, NRRL B-14776, S. xylosus, Staphylococcus xylosus
Server load: low (9%) [HD]