STRINGSTRING
addA protein (Staphylococcus xylosus) - STRING interaction network
"addA" - ATP-dependent helicase/nuclease subunit A in Staphylococcus xylosus
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
addAATP-dependent helicase/nuclease subunit A; ATP-dependent DNA helicase (1213 aa)    
Predicted Functional Partners:
addB
ATP-dependent helicase/deoxyribonuclease subunit B; The heterodimer acts as both an ATP-dependent DNA helicase and an ATP-dependent, dual-direction single-stranded exonuclease. Recognizes the chi site generating a DNA molecule suitable for the initiation of homologous recombination. The AddB nuclease domain is not required for chi fragment generation; this subunit has 5’ -> 3’ nuclease activity (1155 aa)
 
 
  0.995
AID43236.1
annotation not available (378 aa)
              0.816
recD2
ATP-dependent RecD-like DNA helicase; DNA-dependent ATPase and ATP-dependent 5’-3’ DNA helicase. Has no activity on blunt DNA or DNA with 3’-overhangs, requires at least 10 bases of 5’-ssDNA for helicase activity (795 aa)
   
 
  0.815
AID41469.1
annotation not available (677 aa)
   
 
  0.815
polA
DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5’-3’ exonuclease activity (876 aa)
   
   
  0.766
ruvB
Holliday junction ATP-dependent DNA helicase RuvB; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing (334 aa)
   
   
  0.740
recG
ATP-dependent DNA helicase RecG; Critical role in recombination and DNA repair. Helps process Holliday junction intermediates to mature products by catalyzing branch migration. Has a DNA unwinding activity characteristic of a DNA helicase with a 3’- to 5’- polarity. Unwinds branched duplex DNA (Y-DNA) (681 aa)
     
   
  0.725
dinG
ATP-dependent helicase DinG homolog; Probable helicase involved in DNA repair and perhaps also replication (899 aa)
     
 
  0.715
sbcD
Nuclease SbcCD subunit D; SbcCD cleaves DNA hairpin structures. These structures can inhibit DNA replication and are intermediates in certain DNA recombination reactions. The complex acts as a 3’->5’ double strand exonuclease that can open hairpins. It also has a 5’ single-strand endonuclease activity (376 aa)
         
  0.692
AID42883.1
annotation not available (1009 aa)
   
   
  0.691
Your Current Organism:
Staphylococcus xylosus
NCBI taxonomy Id: 1288
Other names: ATCC 29971, CCUG 7324, CIP 81.66, DSM 20266, HAMBI 2057, JCM 2418, NCTC 11043, NRRL B-14776, S. xylosus, Staphylococcus xylosus
Server load: low (6%) [HD]