STRINGSTRING
nusG protein (Staphylococcus xylosus) - STRING interaction network
"nusG" - Transcription termination/antitermination protein NusG in Staphylococcus xylosus
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
nusGTranscription termination/antitermination protein NusG; Participates in transcription elongation, termination and antitermination (182 aa)    
Predicted Functional Partners:
rplK
50S ribosomal protein L11; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors (140 aa)
 
   
  0.989
secE
Protein translocase subunit SecE; Essential subunit of the Sec protein translocation channel SecYEG. Clamps together the 2 halves of SecY. May contact the channel plug during translocation (59 aa)
   
   
  0.986
rpoC
DNA-directed RNA polymerase subunit beta’; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (1207 aa)
 
 
  0.930
rpoB
DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (1183 aa)
 
 
  0.924
rpsD
30S ribosomal protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit (200 aa)
 
 
  0.918
nusA
Transcription termination/antitermination protein NusA; Participates in both transcription termination and antitermination (390 aa)
 
 
  0.900
rplJ
50S ribosomal protein L10; Forms part of the ribosomal stalk, playing a central role in the interaction of the ribosome with GTP-bound translation factors (169 aa)
 
   
  0.894
rpoA
DNA-directed RNA polymerase subunit alpha; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (314 aa)
 
 
  0.892
rpsG
30S ribosomal protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA (156 aa)
 
   
  0.888
rpsJ
30S ribosomal protein S10; Involved in the binding of tRNA to the ribosomes (102 aa)
 
 
  0.887
Your Current Organism:
Staphylococcus xylosus
NCBI taxonomy Id: 1288
Other names: ATCC 29971, CCUG 7324, CIP 81.66, DSM 20266, HAMBI 2057, JCM 2418, NCTC 11043, NRRL B-14776, S. xylosus, Staphylococcus xylosus
Server load: low (19%) [HD]