STRINGSTRING
tal_2 protein (Bacillus cereus) - STRING interaction network
"tal_2" - Probable transaldolase in Bacillus cereus
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
tal_2Probable transaldolase; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway; Belongs to the transaldolase family. Type 3B subfamily (222 aa)    
Predicted Functional Partners:
tkt_2
Transketolase; Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate (664 aa)
   
  0.985
tkt_1
Transketolase; Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate (666 aa)
   
  0.984
pgi
annotation not available (450 aa)
   
  0.948
pfkA
ATP-dependent 6-phosphofructokinase; Catalyzes the phosphorylation of D-fructose 6-phosphate to fructose 1,6-bisphosphate by ATP, the first committing step of glycolysis; Belongs to the phosphofructokinase type A (PFKA) family. ATP-dependent PFK group I subfamily. Prokaryotic clade "B1" sub-subfamily (319 aa)
   
  0.936
pyk_2
Pyruv_kin- pyruvate kinase; Belongs to the pyruvate kinase family (585 aa)
   
 
  0.933
fba
Putative fructose-bisphosphate aldolase; Fruc_bis_ald_- fructose-1,6-bisphosphate aldolase, class II (285 aa)
   
 
  0.929
glpX_2
glpX- fructose-1,6-bisphosphatase, class II (321 aa)
   
 
  0.921
B4079_4523
glpX- fructose-1,6-bisphosphatase, class II (323 aa)
   
 
  0.920
deoC
Deoxyribose-phosphate aldolase; Catalyzes a reversible aldol reaction between acetaldehyde and D-glyceraldehyde 3-phosphate to generate 2-deoxy- D-ribose 5-phosphate; Belongs to the DeoC/FbaB aldolase family. DeoC type 1 subfamily (223 aa)
   
 
  0.912
eno
Enolase; Catalyzes the reversible conversion of 2- phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis; Belongs to the enolase family (431 aa)
   
  0.906
Your Current Organism:
Bacillus cereus
NCBI taxonomy Id: 1396
Other names: ATCC 14579, B. cereus, BCRC 10603, Bacillus cereus, Bacillus endorhythmos, Bacillus medusa, Bacillus sp. 2479, Bacillus sp. BS2(2013b), Bacillus sp. BV4, Bacillus sp. JKR50, Bacillus sp. JKR62, Bacillus sp. JP44SK22, Bacillus sp. JP44SK37, Bacillus sp. JP44SK43, Bacillus sp. JP44SK45, Bacillus sp. JSG1(2014), Bacillus sp. KER 17, Bacillus sp. MZ-01, Bacillus sp. PXDK-1, Bacillus sp. Pf-1, Bacillus sp. V3, Bacillus sp. mmm86, CCM 2010, CCRC 10603, CCUG 7414, CIP 66.24, DSM 31, IAM 12605, IFO 15305, JCM 2152, LMG 6923, NBRC 15305, NCCB 75008, NCIMB 9373, NCTC 2599, NRRL B-3711, VKM B-504
Server load: low (13%) [HD]