STRINGSTRING
tgt protein (Bacillus cereus) - STRING interaction network
"tgt" - Queuine tRNA-ribosyltransferase in Bacillus cereus
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
tgtQueuine tRNA-ribosyltransferase; Catalyzes the base-exchange of a guanine (G) residue with the queuine precursor 7-aminomethyl-7-deazaguanine (PreQ1) at position 34 (anticodon wobble position) in tRNAs with GU(N) anticodons (tRNA-Asp, -Asn, -His and -Tyr). Catalysis occurs through a double-displacement mechanism. The nucleophile active site attacks the C1’ of nucleotide 34 to detach the guanine base from the RNA, forming a covalent enzyme-RNA intermediate. The proton acceptor active site deprotonates the incoming PreQ1, allowing a nucleophilic attack on the C1’ of the ribose to form th [...] (379 aa)    
Predicted Functional Partners:
queA
S-adenosylmethionine-tRNA ribosyltransferase-isomerase; Transfers and isomerizes the ribose moiety from AdoMet to the 7-aminomethyl group of 7-deazaguanine (preQ1-tRNA) to give epoxyqueuosine (oQ-tRNA) (350 aa)
   
  0.998
secDF
Multifunctional fusion protein; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. SecDF uses the proton motive force (PMF) to complete protein translocation after the ATP-dependent function of SecA; Belongs to the SecD/SecF family. SecD subfamily (754 aa)
 
   
  0.961
yajC
yajC- preprotein translocase, YajC subunit (86 aa)
   
   
  0.940
ruvB
Holliday junction ATP-dependent DNA helicase RuvB; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing (333 aa)
   
   
  0.876
ruvA
Holliday junction ATP-dependent DNA helicase RuvA; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing. RuvA stimulates, in the presence of DNA, the weak ATPase activity of RuvB (205 aa)
         
  0.871
DJ87_446
Uncharacterized protein (66 aa)
              0.852
truA_2
tRNA pseudouridine synthase A; Formation of pseudouridine at positions 38, 39 and 40 in the anticodon stem and loop of transfer RNAs (247 aa)
   
   
  0.835
thyA
Thymidylate synthase; Catalyzes the reductive methylation of 2’-deoxyuridine- 5’-monophosphate (dUMP) to 2’-deoxythymidine-5’-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor and reductant in the reaction, yielding dihydrofolate (DHF) as a by-product. This enzymatic reaction provides an intracellular de novo source of dTMP, an essential precursor for DNA biosynthesis (318 aa)
 
        0.774
rpsR
30S ribosomal protein S18; Binds as a heterodimer with protein S6 to the central domain of the 16S rRNA, where it helps stabilize the platform of the 30S subunit (77 aa)
   
   
  0.773
dtd
D-aminoacyl-tRNA deacylase; An aminoacyl-tRNA editing enzyme that deacylates mischarged D-aminoacyl-tRNAs. Also deacylates mischarged glycyl- tRNA(Ala), protecting cells against glycine mischarging by AlaRS. Acts via tRNA-based rather than protein-based catalysis; rejects L-amino acids rather than detecting D-amino acids in the active site. By recycling D-aminoacyl-tRNA to D-amino acids and free tRNA molecules, this enzyme counteracts the toxicity associated with the formation of D-aminoacyl-tRNA entities in vivo and helps enforce protein L-homochirality; Belongs to the DTD family (146 aa)
   
   
  0.768
Your Current Organism:
Bacillus cereus
NCBI taxonomy Id: 1396
Other names: ATCC 14579, B. cereus, BCRC 10603, Bacillus cereus, Bacillus endorhythmos, Bacillus medusa, Bacillus sp. 2479, Bacillus sp. BS2(2013b), Bacillus sp. BV4, Bacillus sp. JKR50, Bacillus sp. JKR62, Bacillus sp. JP44SK22, Bacillus sp. JP44SK37, Bacillus sp. JP44SK43, Bacillus sp. JP44SK45, Bacillus sp. JSG1(2014), Bacillus sp. KER 17, Bacillus sp. MZ-01, Bacillus sp. PXDK-1, Bacillus sp. Pf-1, Bacillus sp. V3, Bacillus sp. mmm86, CCM 2010, CCRC 10603, CCUG 7414, CIP 66.24, DSM 31, IAM 12605, IFO 15305, JCM 2152, LMG 6923, NBRC 15305, NCCB 75008, NCIMB 9373, NCTC 2599, NRRL B-3711, VKM B-504
Server load: low (20%) [HD]