STRINGSTRING
recU protein (Bacillus cereus) - STRING interaction network
"recU" - Holliday junction resolvase RecU in Bacillus cereus
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
recUHolliday junction resolvase RecU; Endonuclease that resolves Holliday junction intermediates in genetic recombination. Cleaves mobile four-strand junctions by introducing symmetrical nicks in paired strands. Promotes annealing of linear ssDNA with homologous dsDNA. Required for DNA repair, homologous recombination and chromosome segregation (200 aa)    
Predicted Functional Partners:
ruvA
Holliday junction ATP-dependent DNA helicase RuvA; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing. RuvA stimulates, in the presence of DNA, the weak ATPase activity of RuvB (205 aa)
   
     
  0.888
ruvB
Holliday junction ATP-dependent DNA helicase RuvB; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing (333 aa)
           
  0.856
recG
ATP-dependent DNA helicase RecG; Critical role in recombination and DNA repair. Helps process Holliday junction intermediates to mature products by catalyzing branch migration. Has a DNA unwinding activity characteristic of a DNA helicase with a 3’- to 5’- polarity. Unwinds branched duplex DNA (Y-DNA) (682 aa)
         
  0.760
recJ
recJ- single-stranded-DNA-specific exonuclease RecJ (779 aa)
           
  0.746
uvrC
UvrABC system protein C; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrC both incises the 5’ and 3’ sides of the lesion. The N-terminal half is responsible for the 3’ incision and the C-terminal half is responsible for the 5’ incision (594 aa)
   
     
  0.741
DJ87_5413
PBP_1a_fam- penicillin-binding , 1A family protein (900 aa)
 
   
  0.738
recO
DNA repair protein RecO; Involved in DNA repair and RecF pathway recombination (248 aa)
   
     
  0.734
recF
DNA replication and repair protein RecF; The RecF protein is involved in DNA metabolism; it is required for DNA replication and normal SOS inducibility. RecF binds preferentially to single-stranded, linear DNA. It also seems to bind ATP (375 aa)
   
     
  0.725
DJ87_5411
Uncharacterized protein (341 aa)
              0.714
uvrB
UvrABC system protein B; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one UvrB monomer. DNA wrap is dependent on ATP binding by UvrB and probably causes local melting of the DNA helix, facilitating insertion of UvrB beta-hairpin between the DNA strands. Then UvrB probes one DNA strand for the presence of a lesion. If a lesion is found the UvrA subunits dissociate and [...] (658 aa)
           
  0.709
Your Current Organism:
Bacillus cereus
NCBI taxonomy Id: 1396
Other names: ATCC 14579, B. cereus, BCRC 10603, Bacillus cereus, Bacillus endorhythmos, Bacillus medusa, Bacillus sp. 2479, Bacillus sp. BS2(2013b), Bacillus sp. BV4, Bacillus sp. JKR50, Bacillus sp. JKR62, Bacillus sp. JP44SK22, Bacillus sp. JP44SK37, Bacillus sp. JP44SK43, Bacillus sp. JP44SK45, Bacillus sp. JSG1(2014), Bacillus sp. KER 17, Bacillus sp. MZ-01, Bacillus sp. PXDK-1, Bacillus sp. Pf-1, Bacillus sp. V3, Bacillus sp. mmm86, CCM 2010, CCRC 10603, CCUG 7414, CIP 66.24, DSM 31, IAM 12605, IFO 15305, JCM 2152, LMG 6923, NBRC 15305, NCCB 75008, NCIMB 9373, NCTC 2599, NRRL B-3711, VKM B-504
Server load: low (13%) [HD]