STRINGSTRING
mfd protein (Bacillus cereus) - STRING interaction network
"mfd" - Transcription-repair-coupling factor in Bacillus cereus
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
mfdTranscription-repair-coupling factor; Couples transcription and DNA repair by recognizing RNA polymerase (RNAP) stalled at DNA lesions. Mediates ATP-dependent release of RNAP and its truncated transcript from the DNA, and recruitment of nucleotide excision repair machinery to the damaged site (1121 aa)    
Predicted Functional Partners:
DJ87_5581
annotation not available (55 aa)
            0.954
uvrA
UvrABC system protein A; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate (958 aa)
   
 
  0.899
pth
Peptidyl-tRNA hydrolase; The natural substrate for this enzyme may be peptidyl- tRNAs which drop off the ribosome during protein synthesis; Belongs to the PTH family (186 aa)
         
  0.824
polA
DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5’-3’ exonuclease activity (877 aa)
 
     
  0.820
spoVT
Stage V sporulation protein T, AbrB family transcriptional regulator (SpoVT); spore_V_T- stage V sporulation protein T (178 aa)
         
  0.805
ruvB
Holliday junction ATP-dependent DNA helicase RuvB; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing (333 aa)
 
   
  0.793
mutS2
Endonuclease MutS2; Endonuclease that is involved in the suppression of homologous recombination and may therefore have a key role in the control of bacterial genetic diversity (786 aa)
   
     
  0.719
greA
Transcription elongation factor GreA; Necessary for efficient RNA polymerase transcription elongation past template-encoded arresting sites. The arresting sites in DNA have the property of trapping a certain fraction of elongating RNA polymerases that pass through, resulting in locked ternary complexes. Cleavage of the nascent transcript by cleavage factors such as GreA or GreB allows the resumption of elongation from the new 3’terminus. GreA releases sequences of 2 to 3 nucleotides (158 aa)
         
  0.715
dnaX
DNA polymerase III subunit gamma/tau; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. This DNA polymerase also exhibits 3’ to 5’ exonuclease activity (562 aa)
   
  0.702
lepA
Elongation factor 4; Required for accurate and efficient protein synthesis under certain stress conditions. May act as a fidelity factor of the translation reaction, by catalyzing a one-codon backward translocation of tRNAs on improperly translocated ribosomes. Back- translocation proceeds from a post-translocation (POST) complex to a pre-translocation (PRE) complex, thus giving elongation factor G a second chance to translocate the tRNAs correctly. Binds to ribosomes in a GTP-dependent manner (607 aa)
           
  0.680
Your Current Organism:
Bacillus cereus
NCBI taxonomy Id: 1396
Other names: ATCC 14579, B. cereus, BCRC 10603, Bacillus cereus, Bacillus endorhythmos, Bacillus medusa, Bacillus sp. 2479, Bacillus sp. BS2(2013b), Bacillus sp. BV4, Bacillus sp. JKR50, Bacillus sp. JKR62, Bacillus sp. JP44SK22, Bacillus sp. JP44SK37, Bacillus sp. JP44SK43, Bacillus sp. JP44SK45, Bacillus sp. JSG1(2014), Bacillus sp. KER 17, Bacillus sp. MZ-01, Bacillus sp. PXDK-1, Bacillus sp. Pf-1, Bacillus sp. V3, Bacillus sp. mmm86, CCM 2010, CCRC 10603, CCUG 7414, CIP 66.24, DSM 31, IAM 12605, IFO 15305, JCM 2152, LMG 6923, NBRC 15305, NCCB 75008, NCIMB 9373, NCTC 2599, NRRL B-3711, VKM B-504
Server load: low (12%) [HD]