STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
rpoARNA polymerase, alpha subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (329 aa)    
Predicted Functional Partners:
rpoD
RNA polymerase, sigma(70) factor; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the primary sigma factor during exponential growth.
 
 
 0.999
rplQ
50S ribosomal subunit protein L17; Residues 1 to 127 of 127 are 100.00 pct identical to residues 1 to 127 of 127 from Escherichia coli K-12 Strain MG1655: B3294.
 
 
 0.999
rpsD
30S ribosomal subunit protein S4; One of two assembly initiator proteins for the 30S subunit, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit. Protein S4 is also a translational repressor protein, it controls the translation of the alpha-operon (which codes for S13, S11, S4, RNA polymerase alpha subunit, and L17) by binding to its mRNA.
 
 
 0.999
rpsK
30S ribosomal subunit protein S11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine- Dalgarno cleft in the 70S ribosome (By similarity); Belongs to the universal ribosomal protein uS11 family.
 
 0.999
rpsM
30S ribosomal subunit protein S13; Located at the top of the head of the 30S subunit, it contacts several helices of the 16S rRNA. In the E.coli 70S ribosome in the initiation state it has been modeled to contact the 23S rRNA (bridge B1a) and protein L5 of the 50S subunit (bridge B1b), connecting the 2 subunits; bridge B1a is broken in the model with bound EF-G, while the protein-protein contacts between S13 and L5 in B1b change. Contacts the tRNAs in the A and P sites (By similarity); Belongs to the universal ribosomal protein uS13 family.
 
 0.999
rpoZ
RNA polymerase, omega subunit; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits (By similarity).
 
 0.999
rpoB
RNA polymerase, beta subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
 
 0.999
rpoC
RNA polymerase, beta prime subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
 
 0.999
nusA
Transcription pausing; Participates in both transcription termination and antitermination.
 
 
 0.998
rpsE
30S ribosomal subunit protein S5; With S4 and S12 plays an important role in translational accuracy; Belongs to the universal ribosomal protein uS5 family.
 
 
 0.998
Your Current Organism:
Escherichia coli O157H7 EDL933
NCBI taxonomy Id: 155864
Other names: E. coli O157:H7 str. EDL933, Escherichia coli O157:H7 EDL933, Escherichia coli O157:H7 str. EDL933, Escherichia coli O157:H7 strain EDL933
Server load: medium (48%) [HD]