STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
hslVHeat shock protein hslVU, proteasome-related peptidase subunit; Protease subunit of a proteasome-like degradation complex believed to be a general protein degrading machinery. Belongs to the peptidase T1B family. HslV subfamily. (176 aa)    
Predicted Functional Partners:
hslU
Heat shock protein hslVU, ATPase subunit, homologous to chaperones; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis.
 
 0.999
clpX
ATP-dependent specificity component of clpP serine protease, chaperone; ATP-dependent specificity component of the Clp protease. It directs the protease to specific substrates. Can perform chaperone functions in the absence of ClpP.
  
  
 0.939
clpP
ATP-dependent proteolytic subunit of clpA-clpP serine protease, heat shock protein F21.5; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family.
  
 
 0.922
dnaK
Chaperone Hsp70; Acts as a chaperone; Belongs to the heat shock protein 70 family.
  
  
 0.918
clpB
Heat shock protein; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE. Acts before DnaK, in the processing of protein aggregates. Protein binding stimulates the ATPase activity; ATP hydrolysis unfolds the denatured protein aggregates, which probably helps expose new hydrophobic binding sites on the surface of ClpB-bound aggregates, contributing to the solubilization and refolding of denatured protein aggregates by DnaK (By similarity). Belongs to the ClpA/ClpB family.
   
  
 0.911
htpG
Chaperone Hsp90, heat shock protein C 62.5; Molecular chaperone. Has ATPase activity.
   
  
 0.907
clpA
ATP-binding component of serine protease; ATP-dependent specificity component of the ClpAP protease. It directs the protease to specific substrates. It has unfoldase activity. The primary function of the ClpA-ClpP complex appears to be the degradation of unfolded or abnormal proteins (By similarity). Belongs to the ClpA/ClpB family.
   
  
 0.865
grpE
Phage lambda replication; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP [...]
  
  
 0.850
dnaJ
Chaperone with DnaK; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, DnaK [...]
   
  
 0.846
yrfH
Orf, hypothetical protein; Involved in the recycling of free 50S ribosomal subunits that still carry a nascent chain. Binds RNA more specifically than DNA. Binds with very high affinity to the free 50S ribosomal subunit. Does not bind it when it is part of the 70S ribosome (By similarity).
  
    0.795
Your Current Organism:
Escherichia coli O157H7 EDL933
NCBI taxonomy Id: 155864
Other names: E. coli O157:H7 str. EDL933, Escherichia coli O157:H7 EDL933, Escherichia coli O157:H7 str. EDL933, Escherichia coli O157:H7 strain EDL933
Server load: low (34%) [HD]