STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
recGATP-dependent DNA helicase; Critical role in recombination and DNA repair. Helps process Holliday junction intermediates to mature products by catalyzing branch migration. Has a DNA unwinding activity characteristic of a DNA helicase with a 3'- to 5'- polarity. Unwinds branched duplex DNA (Y- DNA); Belongs to the helicase family. RecG subfamily. (676 aa)    
Predicted Functional Partners:
ileS
isoleucine--tRNA ligase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). Belongs to the class-I aminoacyl-tRNA synthetase family. IleS type 1 subfamily.
     
 0.898
pyrG
CTP synthetase; Catalyzes the ATP-dependent amination of UTP to CTP with either L-glutamine or ammonia as the source of nitrogen. Regulates intracellular CTP levels through interactions with the four ribonucleotide triphosphates.
     
 0.894
ALI52379.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
    0.874
plsX
Phosphate acyltransferase; Catalyzes the reversible formation of acyl-phosphate (acyl- PO(4)) from acyl-[acyl-carrier-protein] (acyl-ACP). This enzyme utilizes acyl-ACP as fatty acyl donor, but not acyl-CoA.
  
  
 0.873
fusA
Elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 subfamily.
 
   
 0.822
ALI52378.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.814
polA
DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity.
 
   
 0.799
acpP
Acyl carrier protein; Carrier of the growing fatty acid chain in fatty acid biosynthesis.
  
  
 0.780
recA
Recombinase RecA; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family.
 
   
 0.744
lepA
GTP-binding protein LepA; Required for accurate and efficient protein synthesis under certain stress conditions. May act as a fidelity factor of the translation reaction, by catalyzing a one-codon backward translocation of tRNAs on improperly translocated ribosomes. Back-translocation proceeds from a post-translocation (POST) complex to a pre- translocation (PRE) complex, thus giving elongation factor G a second chance to translocate the tRNAs correctly. Binds to ribosomes in a GTP- dependent manner.
     
 0.727
Your Current Organism:
Lactobacillus helveticus
NCBI taxonomy Id: 1587
Other names: ATCC 15009, Bacillus casei e, Bacillus e, CCUG 30139, CIP 103146, Caseobacterium e, DSM 20075, IFO 15019, L. helveticus, LMG 13555, LMG 22464 [[Lactobacillus suntoryeus]], LMG 6413, LMG:13555, LMG:22464 [[Lactobacillus suntoryeus]], LMG:6413, Lactobacillus helveticum, Lactobacillus sp. NCIM 2126, Lactobacillus sp. NCIM 2733, Lactobacillus suntoryeus, Lactobacillus suntoryeus Cachat and Priest 2005, Lactobacterium helveticum, NBRC 15019, NCIMB 14005 [[Lactobacillus suntoryeus]], NRRL B-4526, Plocamobacterium helveticum, Thermobacterium helveticum, strain SA [[Lactobacillus suntoryeus]]
Server load: low (30%) [HD]