STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
cmoAtRNA methyltransferase; Catalyzes the conversion of S-adenosyl-L-methionine (SAM) to carboxy-S-adenosyl-L-methionine (Cx-SAM). (246 aa)    
Predicted Functional Partners:
cmoB
tRNA methyltransferase; Catalyzes carboxymethyl transfer from carboxy-S-adenosyl-L- methionine (Cx-SAM) to 5-hydroxyuridine (ho5U) to form 5- carboxymethoxyuridine (cmo5U) at position 34 in tRNAs.
 0.995
KYP84524.1
Bacitracin synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ATP-dependent AMP-binding enzyme family.
    
 0.960
KYP82595.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.956
KYP82312.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.956
gcvP
Glycine dehydrogenase; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family.
     
 0.778
cmoM
SAM-dependent methyltransferase; Catalyzes the methylation of 5-carboxymethoxyuridine (cmo5U) to form 5-methoxycarbonylmethoxyuridine (mcmo5U) at position 34 in tRNAs; Belongs to the class I-like SAM-binding methyltransferase superfamily. CmoM family.
 
 
 0.776
KYP85215.1
Membrane protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
    0.767
aas
acyl-ACP synthetase; Plays a role in lysophospholipid acylation. Transfers fatty acids to the 1-position via an enzyme-bound acyl-ACP intermediate in the presence of ATP and magnesium. Its physiological function is to regenerate phosphatidylethanolamine from 2-acyl-glycero-3- phosphoethanolamine (2-acyl-GPE) formed by transacylation reactions or degradation by phospholipase A1; In the C-terminal section; belongs to the ATP-dependent AMP-binding enzyme family.
 
  
 0.759
thiG
Thiazole synthase; Catalyzes the rearrangement of 1-deoxy-D-xylulose 5-phosphate (DXP) to produce the thiazole phosphate moiety of thiamine. Sulfur is provided by the thiocarboxylate moiety of the carrier protein ThiS. In vitro, sulfur can be provided by H(2)S.
      0.720
KYP85379.1
Chromophore lyase; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.619
Your Current Organism:
bacteria symbiont BFo1
NCBI taxonomy Id: 1628855
Other names: b. symbiont BFo1 of Frankliniella occidentalis, bacteria symbiont BFo1 of Frankliniella occidentalis, bacterium BFo1
Server load: low (24%) [HD]