STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
nadK1Predicted sugar kinase; Involved in the regulation of the intracellular balance of NAD and NADP, and is a key enzyme in the biosynthesis of NADP. Catalyzes specifically the phosphorylation on 2'-hydroxyl of the adenosine moiety of NAD to yield NADP. (307 aa)    
Predicted Functional Partners:
nadE
NAD synthase; Catalyzes the ATP-dependent amidation of deamido-NAD to form NAD. Uses L-glutamine as a nitrogen source.
 
  
 0.956
nadK2
Predicted sugar kinase; Involved in the regulation of the intracellular balance of NAD and NADP, and is a key enzyme in the biosynthesis of NADP. Catalyzes specifically the phosphorylation on 2'-hydroxyl of the adenosine moiety of NAD to yield NADP.
  
  
 
0.925
nadD
Nicotinic acid mononucleotide adenylyltransferase; Belongs to the NadD family.
  
 
 0.918
pntB
NAD/NADP transhydrogenase beta subunit; The transhydrogenation between NADH and NADP is coupled to respiration and ATP hydrolysis and functions as a proton pump across the membrane; Belongs to the PNT beta subunit family.
     
 0.906
pntA
NAD/NADP transhydrogenase alpha subunit.
     
 0.905
pntA-2
NAD/NADP transhydrogenase alpha subunit.
     
 0.905
Pro_0179
Uncharacterized conserved protein.
       0.822
ndhE
NAD(P)H-quinone oxidoreductase chain 4L; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration.
       0.795
ndhG
NAD(P)H-quinone oxidoreductase chain 6; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I subunit 6 family.
       0.725
ndhI
NAD(P)H-quinone oxidoreductase subunit I; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient; Belongs to the complex I 23 kDa subunit family.
       0.725
Your Current Organism:
Prochlorococcus marinus CCMP1375
NCBI taxonomy Id: 167539
Other names: P. marinus subsp. marinus str. CCMP1375, Prochlorococcus marinus SS120, Prochlorococcus marinus subsp. marinus str. CCMP1375, Prochlorococcus marinus subsp. marinus str. SS120
Server load: low (24%) [HD]