STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
psaCPhotosystem I subunit PsaC; Apoprotein for the two 4Fe-4S centers FA and FB of photosystem I (PSI); essential for photochemical activity. FB is the terminal electron acceptor of PSI, donating electrons to ferredoxin. The C-terminus interacts with PsaA/B/D and helps assemble the protein into the PSI complex. Required for binding of PsaD and PsaE to PSI. PSI is a plastocyanin/cytochrome c6-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically characterized acceptors A0, [...] (81 aa)    
Predicted Functional Partners:
psaB
Photosystem I PsaB protein; PsaA and PsaB bind P700, the primary electron donor of photosystem I (PSI), as well as the electron acceptors A0, A1 and FX. PSI is a plastocyanin/cytochrome c6-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically characterized acceptors A0, A1, FX, FA and FB in turn. Oxidized P700 is reduced on the lumenal side of the thylakoid membrane by plastocyanin or cytochrome c6.
  
 
 0.998
psaA
Photosystem I PsaA protein; PsaA and PsaB bind P700, the primary electron donor of photosystem I (PSI), as well as the electron acceptors A0, A1 and FX. PSI is a plastocyanin/cytochrome c6-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically characterized acceptors A0, A1, FX, FA and FB in turn. Oxidized P700 is reduced on the lumenal side of the thylakoid membrane by plastocyanin or cytochrome c6.
  
 
 0.998
psaE
Photosystem I PsaE protein (subunit IV); Stabilizes the interaction between PsaC and the PSI core, assists the docking of the ferredoxin to PSI and interacts with ferredoxin-NADP oxidoreductase; Belongs to the PsaE family.
  
 
 0.997
psaL
Photosystem I PsaL protein (subunit XI).
  
 
 0.997
psaD
Photosystem I protein PsaD.
  
 
 0.997
psaF
Photosystem I PsaF protein (subunit III).
  
 
 0.996
psaK
Photosystem I PsaK protein (subunit X).
  
 
 0.996
psaJ
Photosystem I PsaJ protein (subunit IX); May help in the organization of the PsaE and PsaF subunits. Belongs to the PsaJ family.
    
 0.995
ABO17995.1
Chlorophyll a/b binding light harvesting protein PcbD.
  
 
 0.948
ABO17277.1
Light-harvesting complex protein.
  
 
 0.947
Your Current Organism:
Prochlorococcus marinus MIT9301
NCBI taxonomy Id: 167546
Other names: P. marinus str. MIT 9301, Prochlorococcus marinus str. MIT 9301
Server load: low (24%) [HD]