STRINGSTRING
fmt protein (Bifidobacterium adolescentis) - STRING interaction network
"fmt" - Methionyl-tRNA formyltransferase in Bifidobacterium adolescentis
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
fmtMethionyl-tRNA formyltransferase; Attaches a formyl group to the free amino group of methionyl-tRNA(fMet). The formyl group appears to play a dual role in the initiator identity of N-formylmethionyl-tRNA by promoting its recognition by IF2 and preventing the misappropriation of this tRNA by the elongation apparatus (320 aa)    
Predicted Functional Partners:
def_1
Peptide deformylase; Removes the formyl group from the N-terminal Met of newly synthesized proteins. Requires at least a dipeptide for an efficient rate of reaction. N-terminal L-methionine is a prerequisite for activity but the enzyme has broad specificity at other positions (161 aa)
 
  0.968
folD
Bifunctional protein FolD; Catalyzes the oxidation of 5,10- methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10-methenyltetrahydrofolate to 10- formyltetrahydrofolate (291 aa)
 
 
  0.967
metG
Methionine--tRNA ligase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation (620 aa)
   
 
  0.955
glyA
Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF- independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism (435 aa)
     
 
  0.954
dfrA
annotation not available (221 aa)
   
  0.946
purT
Formate-dependent phosphoribosylglycinamide formyltransferase; Involved in the de novo purine biosynthesis. Catalyzes the transfer of formate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR). Formate is provided by PurU via hydrolysis of 10-formyl-tetrahydrofolate; Belongs to the PurK/PurT family (417 aa)
     
 
    0.900
pheT
annotation not available (869 aa)
         
  0.699
priA
annotation not available (749 aa)
 
        0.690
BADO_1139
annotation not available (544 aa)
   
   
  0.679
BADO_0326
annotation not available (909 aa)
         
  0.675
Your Current Organism:
Bifidobacterium adolescentis
NCBI taxonomy Id: 1680
Other names: AS 1.2190, ATCC 15703, B. adolescentis, BCRC 14606, Bifidobacterium adolescentis, CCRC 14606, CCUG 17359, CCUG 18363, CIP 64.59, DSM 20083, LMG 10502, NCAIM B.01822, NCTC 11814
Server load: low (14%) [HD]