STRINGSTRING
greA protein (Bifidobacterium adolescentis) - STRING interaction network
"greA" - Transcription elongation factor GreA in Bifidobacterium adolescentis
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
greATranscription elongation factor GreA; Necessary for efficient RNA polymerase transcription elongation past template-encoded arresting sites. The arresting sites in DNA have the property of trapping a certain fraction of elongating RNA polymerases that pass through, resulting in locked ternary complexes. Cleavage of the nascent transcript by cleavage factors such as GreA or GreB allows the resumption of elongation from the new 3’terminus. GreA releases sequences of 2 to 3 nucleotides (159 aa)    
Predicted Functional Partners:
rpoC
DNA-directed RNA polymerase subunit beta’; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (1337 aa)
   
 
 
  0.938
rpoA
DNA-directed RNA polymerase subunit alpha; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (332 aa)
 
 
 
  0.924
rpoZ
DNA-directed RNA polymerase subunit omega; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta’ subunit thereby facilitating its interaction with the beta and alpha subunits (94 aa)
   
 
  0.910
rpoB
DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (1186 aa)
       
 
  0.902
fkbP
annotation not available (135 aa)
   
        0.782
tsf
Elongation factor Ts; Associates with the EF-Tu.GDP complex and induces the exchange of GDP to GTP. It remains bound to the aminoacyl-tRNA.EF- Tu.GTP complex up to the GTP hydrolysis stage on the ribosome (291 aa)
 
     
  0.652
infB
Translation initiation factor IF-2; One of the essential components for the initiation of protein synthesis. Protects formylmethionyl-tRNA from spontaneous hydrolysis and promotes its binding to the 30S ribosomal subunits. Also involved in the hydrolysis of GTP during the formation of the 70S ribosomal complex (931 aa)
 
 
  0.652
mfd
Transcription-repair-coupling factor; Couples transcription and DNA repair by recognizing RNA polymerase (RNAP) stalled at DNA lesions. Mediates ATP-dependent release of RNAP and its truncated transcript from the DNA, and recruitment of nucleotide excision repair machinery to the damaged site (1188 aa)
         
  0.623
BADO_0694
annotation not available (486 aa)
              0.601
atpA
ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit (542 aa)
         
  0.596
Your Current Organism:
Bifidobacterium adolescentis
NCBI taxonomy Id: 1680
Other names: AS 1.2190, ATCC 15703, B. adolescentis, BCRC 14606, Bifidobacterium adolescentis, CCRC 14606, CCUG 17359, CCUG 18363, CIP 64.59, DSM 20083, LMG 10502, NCAIM B.01822, NCTC 11814
Server load: low (12%) [HD]